

Virginia Commonwealth University VCU Scholars Compass

Theses and Dissertations

**Graduate School** 

2021

# Identifying Genes Downstream of Mef2 that Influence Ethanol Sedation in Drosophila melanogaster

Ananya Talikoti Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

Part of the Animal Experimentation and Research Commons, Genetics Commons, Laboratory and Basic Science Research Commons, Molecular Genetics Commons, and the Other Genetics and Genomics Commons

© The Author

## Downloaded from

https://scholarscompass.vcu.edu/etd/6751

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact\_libcompass@vcu.edu.



# IDENTIFYING GENES DOWNSTREAM OF MEF2 THAT INFLUENCE ETHANOL SEDATION IN DROSOPHILA MELANOGASTER

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science at Virginia Commonwealth University

Bу

# Ananya Talikoti

Bachelor of Science, North Carolina State University, 2019

Advisor: Mike Grotewiel, PhD Associate Dean for Graduate Education Professor, Department of Human & Molecular Genetics



| Ackno   | wlec  | lgments                                                                         | .iv  |
|---------|-------|---------------------------------------------------------------------------------|------|
| Staten  | nent  | of Contributions                                                                | v    |
| List of | figu  | res                                                                             | vi   |
| List of | tabl  | es                                                                              | vii  |
| List of | abb   | reviations                                                                      | viii |
| Abstra  | ct    |                                                                                 | .xi  |
| Chapte  | er 1: | Introduction                                                                    | 1    |
| 1)      | Ov    | erview of alcohol use in humans                                                 | .1   |
|         | a)    | Alcohol use disorder and alcohol consumption patterns                           | 1    |
|         | b)    | AUD diagnostics and DSM definitions                                             | 3    |
|         | c)    | Externalizing behaviors                                                         | 4    |
|         | d)    | AUD, alcohol abuse and alcohol dependence as complex disorders                  | 5    |
|         | e)    | Identification and function of genes influencing AUD risk                       | 6    |
| 2)      | Dro   | osophila melanogaster as a model for alcohol-related behaviors                  | 10   |
|         | a)    | Conservation between Drosophila melanogaster and humans                         | 10   |
|         | b)    | Approaches used to investigate genes contributing to alcohol behaviors in flies | .11  |
|         | c)    | Genetic manipulation of the fly genome                                          | 14   |
|         | d)    | Genes involved in Drosophila melanogaster alcohol behaviors                     | 15   |
| 3)      | My    | vocyte enhancer factor 2 (Mef2)                                                 | 18   |
|         | a)    | Mef2 in vertebrates and Drosophila melanogaster                                 | 18   |
|         | b)    | Mef2 influences ethanol sedation in Drosophila melanogaster                     | 19   |
| 4)      | Sig   | nificance                                                                       | 20   |
| Chapte  | er 2: | RNAi screen of candidate genes downstream of <i>Mef2</i>                        | 21   |
| 1)      | Intr  | roduction and rationale                                                         | 21   |
|         |       | a. Functions of genes of interest                                               | 22   |

# Table of Contents

| 2)     | Materi    | als & methods                                                               | .26 |
|--------|-----------|-----------------------------------------------------------------------------|-----|
|        | a.        | Fly husbandry and stocks                                                    | 26  |
|        | b.        | Identification of fly-human gene orthologs                                  | .26 |
|        | с.        | Ethanol sedation                                                            | 27  |
|        | d.        | Testing genes of interest in ethanol sedation                               | 28  |
|        | e.        | Statistical analyses                                                        | .28 |
| 3)     | Result    | s & Discussion                                                              | 31  |
|        | a.        | Identifying genes of interest                                               | .31 |
|        | b.        | Confirmation and testing of roles for genes in ethanol sedation             | .38 |
|        | C.        | Discussion                                                                  | .40 |
| Chapte | er 3: Ide | entification of <i>Mef</i> 2-dependent gene expression changes              | 47  |
| 1)     | Introdu   | uction & rationale                                                          | .47 |
| 2)     | Materi    | als & methods                                                               | .47 |
|        | a.        | Drosophila husbandry                                                        | 48  |
|        | b.        | Isolation of fly heads                                                      | 48  |
|        | с.        | Preparation of RNA                                                          | 49  |
|        | d.        | Initial RNA quality assessments                                             | .50 |
|        | e.        | RNA-sequencing and related analyses performed by GeneWiz                    | 51  |
|        | f.        | Identification of differentially expressed genes and related analyses using |     |
|        |           | iDEP                                                                        | .52 |
|        | g.        | Analysis of overlapping genes                                               | .53 |
|        | h.        | Gene ontology                                                               | .53 |
| 3)     | Result    | s & discussion                                                              | .55 |
|        | a.        | Rationale and overall experimental design                                   | 55  |
|        | b.        | RNA & RNA-seq quality control assessments                                   | .55 |
|        | C.        | Analysis of <i>Mef2</i> -dependent of differentially expressed genes        | .65 |



| d. Analysis of KD//Gal4 DEGs73                                            |
|---------------------------------------------------------------------------|
| e. Analysis of KD//Gal4//RNAi DEGs9 <sup>.</sup>                          |
| 4) Discussion                                                             |
| Chapter 4: Discussion                                                     |
| Reference                                                                 |
| Chapter 5: Appendices119                                                  |
| 1) Fly husbandry and handling protocol119                                 |
| 2) Sedation assay protocol123                                             |
| 3) List of lethal RNAi's126                                               |
| 4) Head prep protocol127                                                  |
| 5) RNA prep protocols128                                                  |
| 6) Fisher's test R script129                                              |
| 7) 342 Mef2 bound genes and 581 human orthologs130                        |
| 8) 928 human externalizing behavior genes and respective fly orthologs152 |
| Vita                                                                      |



## Acknowledgments

There are several people who have shaped my short yet rewarding time at VCU. Firstly, I'd like to thank my mentor, Dr. Grotewiel for his support, patience and guidance throughout my graduate training. I really appreciate his constant willingness to go above and beyond to help me be successful. I would not have been able to complete this thesis without his guidance.

I would also like to thank my committee members, Dr. Andrew Davies, Dr. Jim Lister and Dr. Laura Mathies for their support. A special thanks to Dr. Mathies for her guidance and willingness to help with our sequencing experiments.

Additionally, I'd like to thank all the students and faculty in the Department of Human and Molecular Genetics (especially Dr. Rita Shiang) for their encouragement. I would also like to thank Brandon Shell for his company and help in the lab.

Finally, I'd like to thank my family, friends and loved ones without whose support completing this stage of my graduate training would not have been possible.



## Statement of Contributions

The primary purpose of my thesis project was to identify genes downstream of *Mef2* that may influence ethanol sedation behaviors in *Drosophila melanogaster*. Dr. Danielle Dick's lab at VCU provided us with a list of genes involved in human externalizing behaviors and a list of 38 genes that overlapped between the externalizing behavior genes and known Mef2-bound genes. These lists were used in several stages in this thesis. Dr. Silviu Bacanu at VCU previously performed a GSCAN analysis of human orthologs of known Mef2-bound genes, which was also used in Chapter 2. Dr. Michael Miles also provided us with several data sets that were referenced in Chapter 2.

GeneWiz performed the RNA-sequencing (Chapter 3) and several downstream analyses. Figures provided by them are denoted in the figure legends. Dr. Laura Mathies helped with several of the bioinformatic analyses described in Chapter 3. All experiments were designed by myself and Dr. Grotewiel. Other than figures specifically denoted as being provided by GeneWiz, I performed all of the experiments and generated the data shown.



# List of Figures

# **CHAPTER 2**

| Figure 1. Outline of the steps taken to identify candidate genes | 36 |
|------------------------------------------------------------------|----|
| Figure 2. <i>Mef2</i> and <i>spin</i> sedation data              | 41 |
| FIgure 3. <i>unc79</i> sedation data                             | 42 |
| FIgure 4. <i>Bx</i> sedation data                                | 43 |
| Figure 5. <i>CtBp</i> sedation data                              | 44 |
| FIgure 6. <i>Fas2</i> expression data                            | 45 |
| Figure 7. <i>For</i> sedation data                               | 46 |

# **CHAPTER 3**

| Figure 1. Overview of GeneWiz's sequencing workflow                 | 54 |
|---------------------------------------------------------------------|----|
| Figure 2. Bioanalyzer traces of each sample                         | 59 |
| Figure 3. Tapestation chromatograms of each sample                  | 62 |
| Figure 4. Relationship between visual grades and Bioanalyzer traces | 63 |
| Figure 5. Sequencing read depth                                     | 64 |
| Figure 6. PCA analyses                                              | 68 |
| Figure 7. Heat map of top 30 DEGs between KD and Gal4               | 69 |
| Figure 8. white and Mef2 expression levels                          | 70 |
| Figure 9. DEGs                                                      | 71 |
| Figure 10. Venn Diagram of 172 DEGs                                 | 72 |
| Figure 11. Venn Diagrams of 31 DEGs                                 | 93 |



## List of Tables

# **CHAPTER 2**

| Table 1. Genotypes, stock number and ordering source of all fly stocks used                        |
|----------------------------------------------------------------------------------------------------|
| Table 2. Crosses used throughout Chapter 230                                                       |
| Table 3. Human externalizing behavior genes, fly orthologs and presence of fly ortholog in initial |
| Mef2 bound 34232                                                                                   |
| Table 4. Fisher's exact test for overlap between Mef2 bound genes and human externalizing          |
| genes                                                                                              |
| Table 5. Candidate genes, human orthologs, previous implications in alcohol behaviors37            |

# **CHAPTER 3**

| Table 1. Absorbance values, RNA concentration, RIN, DV200 and sequence quality       | 57 |
|--------------------------------------------------------------------------------------|----|
| Table 2. Description of 172 DEGs, direction of regulation, brain expression patterns | 74 |
| Table 3. Summary of GO terms enriched for 172 DEGs                                   | 83 |
| Table 4. Functional annotation clustering for 172 DEGs                               | 86 |
| Table 5. Overlapping genes between 172 DEGs and other lists of interest              | 89 |
| Table 6. Fisher's exact test for 172 DEGs and other lists of interest                | 90 |
| Table 7. Description of 31 DEGs, direction of regulation, brain expression patterns  | 94 |
| Table 8. Fisher's exact test of 31 DEGs and other lists of interest                  | 96 |
| Table 9. Overlapping genes between 31 DEGs and other lists of interest               | 97 |
| Table 10. Summary of GO terms enriched for 31 DEGs                                   | 98 |



# List of Abbreviations

| 19-mer   |                                                          |
|----------|----------------------------------------------------------|
| ADH      | alcohol dehydrogenase                                    |
| ALDH     | aldehyde dehydrogenase                                   |
| ANOVA    | analysis of variance                                     |
| AUD      | alcohol use disorder                                     |
| AUDIT    | alcohol use disorder identification test                 |
| AUDIT-C  | alcohol use disorder identification test for consumption |
| AUDIT-P  | alcohol use disorder identification test for preference  |
| AUTS2    | Activator of transcription and developmental regulation  |
| BDSC     | Bloomington Drosophila Stock Center                      |
| BMC      | Bonferroni Multiple Corrections                          |
| Bx       | Beadex                                                   |
| CAFÉ     | capillary feeder                                         |
| cGMP     | cyclic guanosine monophosphate                           |
| CNS      | central nervous system                                   |
| СТВР     | C-terminal binding protein                               |
| ChIP-seq | chromatin immunoprecipitation sequencing                 |
| DALY's   | disability adjusted life years                           |
| DEG      | differentially expressed genes                           |
| DIOPT    | DRSC Integrative and Predictive Tool                     |
| Drat     | Death resistor Adh domain                                |
| DSM-5    | Diagnostic and Statistical Manual                        |
| EGF      | epidermal growth factor receptor                         |
| egl-4    | egg laying defective-4                                   |
| elav     | embryonic lethal abnormal vision                         |



| FDR  |                | false discovery rate                                     |
|------|----------------|----------------------------------------------------------|
| Fasz | 2              |                                                          |
| For. |                | Foraging                                                 |
| GO.  |                |                                                          |
| GOT  | ERM_BP_DIRECT  | GO term Biological Process                               |
| GOT  | FERM_CC_DIRECT | GO term Cellular Component                               |
| GOT  | ERM_MF_DIRECT  | GO Term Molecular Function                               |
| GS.  |                | GeneSwitch                                               |
| GSC  | CAN            | GWAS and Sequencing Consortium of Alcohol and Nicotine   |
| GW   | AS             | genome wide association study                            |
| HAP  | 1              | high alcohol preferring 1                                |
| HIV/ | AIDshuman      | immunodeficiency virus/acquired immunodeficiency disease |
| Hr38 | 3              | hormone receptor like 38                                 |
| ics  |                | icarus                                                   |
| iDEF | ٥              | integrated Differential Expression and Pathway Analysis  |
| Jhe. |                | juvenile hormone esterase                                |
| LAP  | 1              | low alcohol preferring 1                                 |
| LMC  | 01             | LIN-11, IsI-1, Mec-3 Only Domain                         |
| LOF  |                | loss of function                                         |
| MAE  | )S             | MCM1, agamous, deficient, serum response factor          |
| MEF  |                | myocyte enhancer factor 2                                |
| NA   |                | narrow abdomen                                           |
| NCA  | Μ              | neural cell adhesion molecule                            |
| PCA  |                | principal components analysis                            |
| PER  |                | proboscis extension response                             |
| PI   |                | preference index                                         |



| PLR-1 phosphatase | phosphatase of regenerating liver 1      |
|-------------------|------------------------------------------|
| PRKG1             | protein kinase cGMP-dependent 1          |
| RIN               | RNA integrity number                     |
| RISC              | RNA-induced silencing complex            |
| RNAi              | RNA interference                         |
| s-LVv             | small lateral ventral                    |
| SNP               | single nucleotide polymorphism           |
| sl                | slowpoke                                 |
| SPNS1             | Sphingolipid transporter 1               |
| SRE               | selective response to ethanol            |
| ST50              | Sedation Time 50                         |
| S <sub>19</sub>   | specificity score                        |
| Spin              | spinster                                 |
| rRNA              | ribosomal RNA                            |
| TGF-β             | transforming growth factor beta          |
| UAS               | upstream activating sequence             |
| unc79             | uncoordinated 79                         |
| VDRC              | Vienna Drosophila Resource Center        |
| w[A]              | white ash burner                         |
| w[VDRC]           | white Vienna Drosophila Resource Center. |



#### Abstract

Alcohol use disorder is a global public health issue that affects millions across the world. Alcohol use disorder can result in negative physical and mental health outcomes, and currently treatment options are limited and rates of relapse are high. Identifying genes that affect aspects of ethanol behaviors in model organisms, such as Drosophila melanogaster, can serve to eventually develop more robust therapeutic interventions for those experiencing alcohol use disorder or other forms of alcohol dependence. Previous studies have identified a relationship between a person's initial sensitivity to alcohol and their abuse potential for the drug in later life. Therefore, we can study sedation behaviors in Drosophila melanogaster to better understand genes that affect alcohol sensitivity. Work in the Grotewiel laboratory has identified the gene Mef2 as a key regulator of ethanol sedation. The major goals of these studies were to identify genes downstream of Mef2 that produce a consistent behavioral impact on sedation when knocked down (Chapter 2), and to identify global gene expression changes when Mef2 is knocked down (Chapter 3). We found RNAi transgenes against two genes, spin and unc79 consistently and significantly increase the amount of time it takes for flies to become sedated when exposed to ethanol. Additionally, through RNA-seq studies, we identified several Mef2 dependent differentially expressed candidates for future study in ethanol sedation. We compared whether these differentially expressed genes were shared between other gene sets of interest, finding that one set of differentially expressed genes had a significant overlap with genes previously known to bind Mef2. Overall, the studies in this thesis support a number of novel hypotheses regarding the role of *Mef2* and its downstream genes in ethanol sedation that can be explored in the future.



xii

## **CHAPTER 1: INTRODUCTION**

#### 1. Overview of alcohol use in humans

#### 1a. Alcohol use disorder and alcohol consumption patterns

Alcohol use disorder (AUD) is a pattern of problematic alcohol consumption that results in significant impairments or distress, and problems completing daily tasks. Features of AUD include an inability to limit alcohol consumption, development of cravings or tolerance to alcohol and the exhibition of withdrawal symptoms when alcohol is unavailable (NIAAA, SAMHSA 2019). Conditions such as alcohol abuse, dependence and addiction are components of AUD (WHO 2018). In 2016, 15.1 million American adults (aged 18 years or more) were estimated to suffer from AUD, while globally, an estimated 283 million adults aged 15 years or more met some criteria for AUD (WHO 2018). AUD risk varies considerably by gender: in the United States approximately 9.2 million males and 5.3 million females were affected in 2016 (WHO 2018). This is consistent with broader patterns – 237 million men and 46 million women are affected globally. AUD is also prevalent in adolescent communities. In 2018, 400,000 adolescents were predicted to suffer with AUD in some capacity (WHO 2018). Alcohol consumption patterns also vary by geographic location. Although AUD impacts some groups more frequently than others, it is clear that AUD impacts large numbers of individuals across a wide variety of populations.

Alcohol use can have significant health consequences. In 2016, alcohol use contributed to approximately 3 million deaths and 132.6 million disability-adjusted life years (DALY's) (WHO 2018). These metrics equate to 5.3% of all deaths and 5.3% of all DALY's worldwide; alcohol related mortality thus surpasses deaths from diseases such as tuberculosis, HIV/AIDS and diabetes (WHO 2018). Alcohol related deaths fall into several categories, including injuries (28.7%), digestive disease (21.3%), cardiovascular disease (19%), infectious disease (12.9%) and cancer (12.6%) (WHO 2018).



Alcohol consumption has also been linked to a plethora of diseases. For example, increased or irregular heavy alcohol consumption has been strongly associated with hypertensive heart disease and cardiomyopathy, among other types of ischemic heart diseases (Briasoulis et. al 2012, WHO 2018). Mechanisms related to ethanol metabolism, or the oxidation of alcohol (Cederbaum 2012) are causally linked to several types of liver damage, including alcoholic hepatitis and liver cirrhosis (WHO 2018; Gao & Betaller 2011). Rising rates of alcoholic liver disease could cause significant burden on health systems (WHO 2018). There is also a causal link between alcohol use and various types of cancer including esophageal, liver, colon and female breast cancer (Bagnardi et. al 2015, WHO 2018). Alcohol is thought to operate via numerous biological pathways to advance cancer growth (Bagnardi et. al 2015). Specifically, alcohol is able to cause lasting DNA damage and impede normal DNA repair processes (Bagnardi et. al 2015). Alcohol related cancer risk is generally higher in females than males. This could, in part, be due to alcohol's ability to alter estrogen signaling pathways (Cao et. al 2015, Bagnardi et. al 2015, WHO 2018).

Furthermore, alcohol abuse has been linked to weakening of the immune system and therefore, increased susceptibility to infectious disease (Sarkar et. al 2015). In the upper and lower airways alcohol metabolism, or the oxidation of alcohol, facilitated by alcohol and aldehyde dehydrogenase enzymes respectively (detailed in later sections) (Cederbaum 2012) plays a role in disrupting ciliary function and weakening epithelial cells (Sarkar et. al 2015). Additionally, alcohol impairs the function of immune cells like neutrophils and alveolar macrophages. This can lead to more serious disease in drinkers vs. non-drinkers (Sarkar et. al 2015). This is relevant when considering how essential the immune system is for treatment of various diseases - for example, in cancer patients, chemotherapy is most effective when the immune system is fully functional (Sarkar et. al 2015). Additionally, immune signaling in the brain may be a contributing factor to development of AUD. Alcohol leads to neuroimmune signaling, which can further increase alcohol consumption (Sarkar et. al 2015). Furthermore,



www.manaraa.com

alcohol use is associated with many mental, behavioral and neurodevelopmental disorders including anxiety disorders, depression, dementia and Alzheimer's disease (WHO 2018).

The mechanisms driving negative health consequences of alcohol consumption can be grouped into three broad categories: 1) alcohol toxicity on various tissues and organs leading to conditions such as liver disease, heart disease, cancer and immune dysfunction; 2) development of alcohol dependency altering the patient's self-control and potentially contributing to the development of mental disorders such as depression and psychoses; and 3) the psychoactive effects of intoxication (Babor et. al 2010, WHO 2018). It is clear that alcohol use is widespread and alcohol abuse can have dire effects on individual health outcomes as well as broader population health patterns. Therefore, it is essential to better understand AUD with the aim of eventually developing better diagnostic or therapeutic tools for affected individuals.

## 1b. AUD diagnostics and DSM definitions

Diagnostic criteria for AUD are described in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). The DSM-5 diagnosis of AUD is based on the answers to 11 questions; to be diagnosed with AUD, a person must experience a minimum of 2 symptoms listed. The sub-classification of an individual's AUD is based on the number of listed symptoms they experienced (mild: 2-3 symptoms, moderate: 4-5 symptoms and severe: 6+ symptoms). (NIAAA 2016). Examples of questions in the DSM-5 include:

- In the past year, have you:
  - Had times when you ended up drinking more, or longer, than you intended?
  - Spent a lot of time drinking? Or being sick or getting over other aftereffects?
  - Found that drinking or being sick from drinking often interfered with taking care of your home or family? Or caused job troubles? Or school problems?



- Given up or cut back on activities that were important or interesting to you, or gave you pleasure, in order to drink?

The DSM 5 is the first version of the DSM that has a specific diagnosis for AUD.NIAAA 2016). Previous iterations of the DSM separated diagnoses of alcohol abuse and alcohol dependency. Under DSM-IV guidelines, individuals experiencing more than one criterion would be diagnosed with "alcohol abuse," and those experiencing 3+ symptoms would be diagnosed with "alcohol dependency" (NIAAA 2016). While general themes are consistent between the two manuals, there are also key differences between the actual criteria: the DSM-5 removes a criterion referencing legal troubles stemming from alcohol use and adds one regarding alcohol craving as indicators of inappropriate alcohol use (NIAAA 2016).

## 1c. Externalizing behaviors

Defining features of externalizing behaviors include impulsivity and behavioral disinhibition (Dick et. al 2003, Barr et. al 2020). They include psychiatric, non-clinical, substance abuse (including alcohol abuse) and antisocial conditions as well as risky behaviors (Dick et. al 2003). Externalizing behaviors can generally be thought of as those that have direct consequences on the external world relative to the individual exhibiting the behaviors. This separates them from internalizing behaviors, such as anxiety or depression, that have direct effects on the patient (Barr et. al 2020). Externalizing behaviors are quite common; substance and impulse control disorders have lifetime prevalence rates of 29% and 24.8% respectively, and exhibit strong co-morbidity (Barr et. al 2020). These behaviors are responsible for causing significant social burden (Dick 2003, Barr 2020). Twin studies, and more recently, GWAS (genome wide association studies) studies in large populations have identified that all externalizing behaviors have genetic components, but the work of causally linking genetic variants to phenotypes is still incomplete (Dick 2003).



It is thought that the same sets of genes underlie several externalizing behaviors, including ethanol behaviors, as they are observed together more often than would be expected by chance (Aliev et. al 2015). Aliev et. al evaluated associations between a panel of genes and single nucleotide polymorphisms (SNPs) previously associated with alcohol related traits and various externalizing phenotypes. Examples of phenotypes analyzed include: conduct disorders, adult antisocial disorders, illicit drug use and sensation seeking behaviors (Aliev 2015). It was found that the alcohol-related behavior SNPs were significantly enriched for each externalizing phenotype of interest. Thus, there may be a shared genetic liability that predisposes an individual to a host of externalizing behaviors including alcohol-related behaviors (Aliev 2015).

#### 1d. AUD, alcohol abuse and alcohol dependence as complex disorders

Understanding the cause of AUD and behaviors such as alcohol dependence is a crucial first step of lessening the negative consequences of alcohol abuse. Historically, twin studies have been a key way to determine the relative contribution of genes and environmental factors in the development of alcohol misuse. Twin studies are a common method to identify the source of variance in a specific trait (Kendler 1992). By comparing phenotypic correlations between monozygotic and dizygotic twins, it is possible to quantify the amount of phenotypic variance due to genetic factors, the shared environment and the unique environment (Kendler 1992).

The ACE model considers the following categories: additive genetic factors (A), the common environment (C) and the unique environment (E). If a specific category is taken out but the model still fits the data well, that factor was non-significant in its contribution to the phenotype. In early twin studies, it was found that the AE model fit twin data best, indicating that the common environment was not significant (Kendler 1992). However, more recent meta-analysis of twin and adoption studies found that the estimate of heritability of AUDs across 13 twin studies was 0.51, meaning that 51% of the risk of developing AUD is genetic (Verhulst et. al 2015, Ducci & Goldman 2008). The same genes are responsible for development of AUD in



males and females because correlations between same sex and opposite sex twin pairs were not significantly different. Contribution of the common environment was lower (0.083), but was still significant in males and females. The contribution of the unique environment was 0.39. It is well accepted that ~50% of the risk for developing AUD is genetic (Verhulst et. al 2015, Ducci & Goldman 2008).

Previous findings also suggest there is a relationship between alcohol sensitivity and alcohol abuse. A study comparing alcohol response level at age 20 to whether the individual developed alcoholism showed that initial sensitivity to alcohol is associated with lower abuse potential in later life, and initial resistance is associated with higher abuse potential (Schuckit 1994, Schuckit 1997).

The Self Rating Effects (SRE) of Alcohol aims to quantify whether a person has a low or high alcohol sensitivity based on how many drinks it took for them to feel different, exhibit dizziness or slurred speech, show uncoordinated movements and sleep or pass out (Schuckit 1997). The standard SRE asks participants to answer the questions based on the first five times they consumed alcohol, but can be modified to consider different drinking periods. Numerous studies have shown that the SRE is a highly robust indicator of alcohol use outcomes (Ray et. al 2011).

## 1e. Identification and function of genes influencing AUD risk

Historically, attempts to identify genes that contribute to the risk of developing alcoholism were in the form of linkage studies in large families consisting of affected and unaffected individuals (Lipner et. al 2018). The basis of linkage studies is to determine whether any known markers or SNPs segregate with affected individuals more than chance would predict (Lipner et. al 2018). Linkage studies rely on recombination; recombination is unlikely when the marker loci and disease loci are close together, so they are more likely to segregate together than if they were located further away (Ott et. al 2015). Linkage studies are important as they can give



important information about inheritance patterns, penetrance, gene-gene interactions and cosegregation (Lipner et. al 2018). They are highly useful when researchers do not have preliminary insight into what genes may be involved in the pathogenesis of a specific condition, as it is unbiased and takes the entire genome into consideration (Ott et. al 2015, Lipner et. al 2018). However, linkage studies are limited in their scope. They are most informative when diseases follow a Mendelian inheritance pattern and the chromosomal regions implicated are often too large to be functionally meaningful without considerable follow-up (Lipner et. al 2018).

In more recent years, GWAS have become a leading method for identifying genetic polymorphisms contributing to a phenotype. The basic principle of GWAS is to scan the entire genome of unaffected and affected individuals to assess whether any polymorphisms are observed more often in the affected population than the unaffected (Lipner et. al 2018). GWAS has several strengths, including the ability to identify common variants that may account for a percentage of overall disease risk. Additionally, due to their case-control structure, collecting data from families is unnecessary and statistical analysis is relatively straightforward (Ducci & Goldman 2008, Lipner et. al 2018). However, very large sample sizes are needed to provide informative results (Ducci & Goldman 2008, Lipner et. al 2018). In complex phenotypes like alcohol use, individual genes tend to have small effects. This, coupled with a high proportion of studies being underpowered make it difficult to unambiguously identify involved genes (Ducci & Goldman 2018). Another issue is phenotype heterogeneity. It is important to note that in order to be diagnosed with some level of AUD, individuals must experience a minimum of two of the criteria laid out by the DSM-V. Given the number criteria and the different classifications of severity, there are hypothetically 2036 ways for an individual to meet the criteria (Edenberg et. al 2018). Also, DSM-V criteria are very different from previous DSM-IV criteria; therefore, it can be difficult to reproduce older data under new definitions (Edenberg et. al 2013, Edenberg et. al 2018). Additionally, different studies use different inclusion and exclusion criteria and often use



www.manaraa.com

different alcohol phenotypes (response level, alcohol dependency, AUD, etc.) making reproducibility difficult (Edenberg et. al 2013, Edenberg et. al 2018)

Given these challenges, there are a limited number of genes with consistent evidence linking them to AUD. There is very reproducible evidence of the involvement of ADH (alcohol dehydrogenase) and ALDH (aldehyde dehydrogenase) genes in risk of developing alcohol dependence (Edenberg et. al 2018). These genes are involved in the metabolism of ethanol to aldehyde and aldehyde to acetate, respectively (Edenberg et. al 2018). There are seven ADH genes; proteins corresponding to six have been isolated in vivo (Edenberg et. al 2018). Class I ADHs consist of ADH1A, ADH1B and ADH1C and have been shown to have significant roles in ethanol metabolism and together, can affect risk for development of alcohol dependence (Edenberg et, al 2018). These genes are 90% identical and arose from gene duplication events (Edenberg et. al 2018). Given their similarity, the gene products can heterodimerize (Edenberg et. al 2018). Variants in these chromosomal regions are generally in linkage disequilibrium and inherited together. ADH1B is highly expressed in the liver and is believed to be most involved in the oxidation of alcohol to aldehyde (Edenberg et. al 2018). ADH1B has three isoforms: ADH1B\*1, ADH1B\*2 and ADH1B\*3. Each isoform is associated with specific rates of alcohol oxidation, and frequencies of these alleles are population specific (Edenberg et. al 2018). For example, ADH1B\*1 metabolizes alcohol the most slowly and is most commonly observed globally (Edenberg et. al 2018). It is associated with a 3-fold increase in alcohol dependence risk compared to ADH1B\*2 (Edenberg et. al 2018). ADH1B\*2 is associated with rates of metabolism 11x that of the ADH1B\*1 isoform and candidate gene studies strongly show that it is associated with a protective effect against alcohol dependence in Asian populations (Edenberg et. al 2018). However, there is heterogeneity in allele frequencies and amount of protection, even within Asian populations (Edenberg et. al 2018). It is difficult to assess the impact of this isoform on other populations, as its frequency is very low in European and African populations. GWAS has also shown that ADH1B\*2 is associated with Alcohol Use Disorder Identification



Test (AUDIT) scores (Sanchez-Roige et. al 2019). AUDIT is a screening tool made up of ten items spanning three dimensions (consumption (AUDIT-C), dependence and problematic alcohol use (AUDIT-P). GWAS of UK BioBank and 23and Me for AUDIT-C and AUDIT-P identified that ADH1B\*2 was strongly associate with AUDIT (Sanchez-Roige et. al 2018; Edenberg et. al 2018). The third isoform, ADH1B\*3 is primarily found in African populations and is also associated with a protective effect against alcohol misuse (Edenberg et. al 2018). ADH1B\*3 are both coding variants that increase kinetic activity of ADH1B (Edenberg et. al 2018). ADH1C, which is expressed in the liver at about 30% the expression of ADH1B has two isoforms: ADH1C\*1 shows protective effect against alcoholism, has high metabolic activity and is more highly expressed in various population groups than ADH1C\*2 (Edenberg et. al 2018).

ALDHs consist of 19 genes, although ALDH2, ALDH1A and ALDH1B are the primary genes that are involved in the irreversible oxidation of acetylaldehyde to acetate (Edenberg et. al 2018). Gene products from all three form homotetramers. ALDH1A1 and ALDH1B1 have minor effects on risk of developing alcohol dependence (Edenberg et. al 2018). ALDH2 is ubiquitously expressed with high expression levels in the liver (Edenberg et. al 2018). It has two isoforms: ALDH2\*1 and ALDH2\*2. ALDH2\*1 is most commonly expressed in individuals globally (Edenberg et. al 2018). ALDH2\*2 is primarily found in some Asian populations and is protective against alcoholism (Edenberg et. al 2018). It makes the ALDH2 homotetramer inactive, causing individuals with the mutation to have higher blood aldehyde levels. Consequently, when individuals with the ALDH2\*2 variant consume alcohol, there is a toxic buildup of acetylaldehyde, leading to symptoms such as severe flushing, nausea and increased skin temperatures (Edenberg et. al 2018). These negative side effects cause people with the mutation to generally consume less alcohol and therefore, decrease the risk of developing alcohol dependence.



Recent GWAS (genome wide association study) performed with large sample sizes have identified genes of strong interest for further molecular study. Sanchez-Roige et. al performed a GWAS on AUDIT-C and AUDIT-P scores from a UK BioBank and 23andMe population and identified several associated risk loci, some of which map to the following genes: *LINC01833*, *GCKR*, *KLB*, *METAP1*, *JCAD*, and the alcohol metabolism gene *ADH1C* (Sanchez-Roige et. al 2019). Another GWAS studying the genetic etiology of alcohol and tobacco use had a population cohort of 1.2 million individuals (Liu et. al 2019). Liu et. al identified several genes associated with drinks consumed per week, including: *ADH1B*, *GCKR*, *SLC39A8*, *SERPINA1*, *ACTR1B*, *TNFSF12-13* and *HGFAC* (Liu et. al 2019). Genes identified by GWAS, and especially those that are tagged by multiple GWAS could be meaningful candidates for further study in model organisms.

#### 2. Drosophila melanogaster as a model organism for alcohol-related behaviors

## 2a. Conservation between D. melanogaster and humans

Given the complexity and potential confounding social factors of studying AUD in humans, model organism studies have become a key platform to identify and investigate the contribution of genes thought to be involved in alcohol-related behaviors and molecular mechanisms. The fruit fly, *Drosophila melanogaster* is a powerful model organism to functionally and mechanistically characterize the function of various genes for several reasons. Flies possess orthologs for 75% of human disease-causing genes (Yamaguchi & Yoshida 2018; Engel et. al 2019) and have 80% conserved functional protein domains (Yamaguchi & Yoshida 2018) *D. melanogaster* are low cost, are easy to maintain, take up little space and have fast generation times (Engel et. al 2019). It is possible to perform many types of high throughput genetic analyses and easily manipulate individual genes of interest. Additionally, a breadth of bioinformatics resources to perform various analyses with fly-derived data exist (Engel et. al

2019).



Flies are a useful model organism to study alcohol-related behaviors due to shared nervous system molecular machinery (reviewed in Grotewiel & Bettinger 2015, Engel et. al 2019). Additionally, flies exhibit conserved behavioral responses to alcohol exposure as humans: when exposed to low doses, both species show increased psychomotor and locomotor activity. High doses lead to sedation in both species (Engel et. al 2019). Like humans, flies also develop tolerance and withdrawal to alcohol as well as reward learning and memory behaviors (Engel et. al 2019). Though the fly is extremely short lived compared to humans, it is important to note that relatively, the time to develop tolerance and withdrawal symptoms is similar to humans (Adkins et. al 2017).

## 2b. Approaches used to investigate genes contributing to alcohol behaviors in flies

Specific phenotypes associated with AUD, including alcohol sensitivity, tolerance and preference can be studied in flies through the use of a diverse range of behavioral assays. Initial sensitivity to alcohol is one of the most compelling predictors of whether a person later develops alcohol use disorder (Schuckit 1997, Engel et. al 2019). Thus, measuring the amount of time it takes flies of different genotypes to become sedated upon ethanol exposure (which is essentially a measure of ethanol sensitivity) can identify genes that contribute to the development of AUD. Several methods exist to measure ethanol sedation times. One example is the inebriometer. An inebriometer device is essentially a glass column with mesh slats that flies can attach to (Sass et. al 2020; Berger et. al 2004). Once flies become sedated, they drop to the bottom of the column, and the number of sedated flies is measured every minute (Sass et. al 2020; Berger et. al 2004). This method has historically been prevalent; however, it is low throughput and inefficient for studying individual flies (Sass et. al 2020; Berger et. al 2004). Sedation can also be measured by exposing groups of flies to ethanol vapor and recording the number of flies that become sedated at predetermined time intervals. This data can be used to calculate the Sedation Time 50 (ST50), or the amount of time required for 50% of flies in a



group to become sedated. Increased ST50 times indicate increased resistance to ethanol, and vice versa (Sandhu et. al 2015). This method is higher throughput, allows multiple genotypes to be assessed at once and is group based.

Like humans, flies can develop tolerance to alcohol. Generally, tolerance can be thought of as needing an increased amount of the drug to obtain the same response after chronic or multiple exposures, or the same amount of drug eliciting a lower response level (Engel et. al 2019, Berger et. al 2004,). Humans and flies can develop three types of tolerance: acute tolerance, rapid tolerance and chronic tolerance. Acute tolerance is the development of tolerance within a single session of consumption (for example, binge drinking), rapid tolerance is a decrease in the intensity of response after recovery from a first alcohol exposure and chronic tolerance is developed from multiple repeated exposures (Engel et. al 2019). In flies, developing tolerance can look like exhibiting lower levels of locomotor impairment or taking longer to become sedated. Rapid tolerance can be measured using sedation assays. Flies undergo a first exposure to alcohol and are then allowed to recover in the absence of alcohol. They are then reexposed. ST50's from the first and second exposure are compared to determine whether they have developed rapid tolerance. ST50 values from the second exposure being significantly higher than the first is evidence of rapid tolerance (Engel et. al 2019, Berger et. al 2004). Flies can also be raised on alcohol containing food to model chronic tolerance (Engel et. al 2019).

Preference assays build on the idea that the rewarding properties of alcohol contribute to the development of AUD (Engel et. al 2019). An example of an assay to assess fly preference is the proboscis extension response (PER) (Kaun et. al 2011). This assay consists of fixing individual starved flies to a plate. Flies are offered small amounts of alcohol and nonalcoholic food and the rate at which they extend their proboscii is measured. Increased rate of extension is associated with more appetitive substances (Kaun et. al 2011, Shiraiwa 2007). Another example is the two-choice Capillary Feeder (CAFÉ) assay. Flies are able to choose which of two capillaries containing ethanol and non-ethanol containing liquid food they would like to feed



on (Devineni et. al 2009, Engel et. al 2019). Results are measured by calculating the preference index (PI); a value that quantifies the ratio of alcoholic food consumption relative to total consumption (Devineni et. al 2009). Positive and negative PI scores indicate ethanol preference and repulsion respectively. CAFÉ assays have shown that flies increase their preference for alcohol over time: a study conducted by Devnineni et. al found that flies' PI value for alcohol consumption increased steadily over the five days they were exposed to alcohol containing food in the experiment and self-administered alcohol to pharmacologically relevant levels (Devineni et. al 2009). Flies were offered a choice between alcohol containing food laced with quinine, an aversive substance to flies, and regular food. Flies developed a preference for quinine laced alcoholic food compared to non-alcoholic food, showing that they overcame negative stimuli to access alcohol (Devineni et. al 2009). Engel et. al 2019).

Humans and flies both experience hyperactive nervous systems and seizures as a potential consequence of alcohol withdrawal. Alcohol is a depressant of the central nervous system (CNS). Chronic alcohol exposure results in long term excitatory neural adaptations to maintain homeostatic balance (Robinson et. al 2013). Upon withdrawal however, these adaptations result in an overactive nervous system, consequently causing seizures. Robinson et. al found that *D. melanogaster* larvae raised on alcohol containing food show hyper-excitable nervous systems when they are removed from alcohol containing food (Robinson et. al 2013). Seizure susceptibility can be measured in flies by using electrodes to shock the fly brain and induce seizures. Flies undergoing withdrawal were shown to need a lower stimulus voltage to induce seizures (Ghezzi et. al 2014). These experiments show that flies can be powerful models to study withdrawal.

Relapse is commonly observed in individuals attempting to cease problematic alcohol consumption (Melemis 2015). Devenini et. al showed that flies can be used to study relapse behavior by conducting a CAFÉ assay where flies were given the choice between alcoholic and nonalcoholic food (Devineni et. al 2009). Once flies demonstrated a preference for alcohol



containing food, they were deprived of it. During this period, PI values neared 0, since all food tubes available to flies were nonalcoholic. However, when alcohol was reintroduced PI values quickly returned to peak values indicating that flies are able to maintain strong memories of ethanol (Devineni et. al 2009).

#### 2c. Genetic manipulation of the fly genome

There are various approaches to manipulate the fly genome to study underlying genetic mechanisms that may be involved in behavioral alcohol response. A fundamental strategy is the GAL4-UAS system, a bipartite strategy that allows for ectopic expression or knockdown of essentially any transgene or gene in various tissues (Southall et. al 2008, Caygill et. al 2016, Duffy et. al 2002). *GAL4* is endogenously expressed and regulates galactose metabolism in yeast (Caygill et. al 2016). The GAL4 protein consists of 881 amino acids and contains an N terminal DNA binding domain and C terminal transcription activation domain (Duffy et. al 2002). GAL4 dimerizes and binds the Upstream Activation Sequence (UAS), a specific 17-nucleotide sequence. Mediator and essential transcription machinery are recruited, leading to transcription. This activity is retained when GAL4 is expressed in *D. melanogaster* (Southall et. al 2008, Caygill et. al 2016).

In flies, the system requires two transgenic parental lines: the gene of interest is expressed under the control of the UAS, while the other parental line contains the GAL4 driver. When these lines are crossed, the gene of interest, or an RNA interference (RNAi) is expressed in the progeny (Caygill et. al 2016). The UAS-GAL4 system has several advantages that make it an attractive method. Since it is a bipartite system and GAL4 and UAS are in distinct parental lines, it is possible to use a particular UAS with various GAL4 drivers to study the effect of that specific gene in multiple tissue types (Southall et. al 2008). On the other hand, it is possible to use a singular GAL4 driver to study the effect of various genes in a particular tissue type. In the



absence of GAL4, UAS is generally silent or expressed at low levels. Therefore, this system can be used to study toxic or apoptotic proteins (Southall et. al 2008).

Apart from expressing genes of interest, this system can also be used to express RNAi. RNAi is an endogenous cellular mechanism that results in the degradation of RNA molecules. When double stranded RNA (dsRNA) is detected, a protein complex containing DICER is formed (Heigwer et. al 2018). This complex degrades the dsRNA into 21 bp fragments. These dsRNA fragments bind argonaute that subsequently binds to other proteins, forming the RNAiinduced silencer complex (RISC) (Heigwer et. al 2018). RISC is able to recognize mRNA complementary to the dsRNA fragment bound by it, and degrade it, effectively silencing the gene of interest (Heigwer et. al 2018). This system can be applied in coordination with the UAS-GAL4 system. When RNAi is under the control of UAS, the gene of interest will essentially be knocked down when GAL4 is present.

There are several extensions of the UAS-GAL4 system. For example, GeneSwitch (GS) uses a modified GAL4 driver to induce gene expression at specific times (Osterwalder et. al 2001). In this inducible system, GAL4 is in an inactive conformation until exposure to a steroid, mifepristone (RU486). Upon mifepristone treatment, GAL4 conforms to its active state, binds UAS to activate the gene or RNAi of interest (Osterwalder et. al 2001). There are several advantages of this system compared to traditional UAS-GAL4 in regards to flexibility in the timing of gene expression/knockdown. Genes can be variably expressed in different life stages, allowing for the study of specific genes at particular developmental stages. By using this system, it is possible to conduct experiments involving genes that are essential to developmental processes, and for which constitutive knockdown would be lethal (Osterwalder et. al 2001).



#### 2d. Genes involved in Drosophila melanogaster alcohol behaviors

Upwards of 150 fly genes with roles in alcohol-related behaviors have been identified (reviewed in Grotewiel & Bettinger 2015). Some of those genes that have been well characterized will be discussed below. *Mef2* (myocyte enhancer factor 2), the central gene for my thesis project, is known to modulate ethanol sensitivity and is discussed in the subsequent sections.

Autism susceptibility gene (*AUTS2*) is a human gene that has been implicated in several neurological disorders including autism spectrum disorder and developmental delay (Schumann et. al 2011). *AUTS2* has been identified as relevant to alcohol-related behaviors in multiple species. A GWAS studying alcohol consumption identified an intronic SNP in *AUTS2* as significantly associated with alcohol consumption in humans (Engel et. al 2019, Schumann et. al 2011). In mice, the gene was identified between high and low alcohol preferring (HAP1 and LAP1, respectively) lines (Engel et. al 2019). *Tay*, the fly ortholog of *AUTS2* is a negative regulator of the epidermal growth factor receptor (EGFR) pathway (Engel et. al 2019, Schumann et. al 2011, Morozova et. al 2015). Mutations or neuronal RNAi leading to decreased expression of *tay* is associated with a decreased sensitivity to alcohol. Thus, *AUTS2* may play a role in AUD via affecting alcohol sensitivity (Engel et. al 2019, Morozova et. al 2015).

Other examples are the ALDH and ADH genes. Like humans, naturally occurring variation has been observed in these genes and they are involved in ethanol metabolism. *Adh<sup>F</sup>* has higher enzymatic activity than *Adh<sup>S</sup>* and is associated with flies that are more resistant to alcohol (Edenberg et. al 2018). This is similar to naturally occurring isoforms of human ADH1B/A that are associated with higher or lower enzymatic activity and consequently, altered risk of developing alcohol dependence.

Many genes of interest have been identified via GWAS. While GWAS is a powerful method of identification, it has some limitations (Engel et. al 2019). For example, GWAS cannot capture genes because they exhibit changes in expression due to chronic alcohol exposure



(Engel et. al 2019). Transcriptomics level experiments like microarray and RNA-seq are well suited for this. Microarrays have advanced quite a bit since their inception; however, they are still limited by the number of probes available (Engel et. al 2019, Hitzemann et. al 2013). Unlike microarray, RNA-seq is not limited by probe quantity, and well suited to identify transcriptional complexities such as alternative splicing and non-coding RNA (Hitzemann et. al 2013). *Slowpoke (slo)* is a BK channel and ethanol exposure induces expression of the gene in the nervous system. Alternative splicing in the *slo* gene has been found to mediate tolerance in flies (Cowmeadow et. al 2015).

These types of genomic and transcriptomic level studies have not only been crucial to identifying individual genes involved in the phenotype, but have also provided insight into the functional networks within which these genes operate. Networks regulating metabolic activity, stress pathways, chromatin remodeling and immune response, among others, have all been implicated in alcohol behavior (Morozova et. al 2015). For example, Ghezzi et. al and Krishnan et. al used Chromatin immunoprecipitation sequencing (ChIP-seq) to elucidate histone acetylation changes related to mutations in the *slo* genes (Ghezzi et. al 2014, Krishnan et. al 2016). 6b is an element of *slo* that is important for behavioral tolerance. ChIP-seq showed that flies that had been sedated with ethanol vapors and allowed to recover showed a spike in 6b acetylation from the 6-hour mark until the 48-hour time point (Krishnan et. al 2016). The antibody used tags all acetylated histone H4, but spikes were only observed in element 6b. Normal flies show effects of rapid tolerance up to 14 days post initial sedation, but flies with mutated element 6b (*slo*\Delta6b) showed tolerance lasting at least 21 days (Krishnan et. al 2016). Therefore, *slo* may play a role in developing ethanol tolerance.

Other genes, such as *icarus (ics)* have been shown to affect ethanol sensitivity. *Ics* encodes Rsu1, the fly ortholog of human *RSU1* (Ras suppressor 1) (Ojelade et. al 2015). *RSU1* is associated with AUD and lifetime frequency of drinking in adults and adolescent populations, respectively (Ojelade et. al 2015). In flies, interrupting *ics* by a P-element leads to decreased



ethanol sensitivity and expression of UAS-Rsu1 led to rescue of the phenotype (Ojelade et. al 2015). This could potentially be a therapeutic avenue to explore further.

Overall, given the ability to model specific genetic questions and the number of alcohol related genes identified in flies, they are a powerful method to investigate the molecular genetic mechanisms underlying the pathogenesis of AUD in humans.

## 3. Myocyte enhancer factor 2 (Mef2)

#### *3a. Mef2 in vertebrates and Drosophila melanogaster*

In vertebrates, the myocyte enhancer factor-2 (MEF2) family encodes a transcription factor family with myriad functions including key roles in myogenesis and morphogenesis of skeletal, cardiac and smooth muscle cells (Pon & Marra 2016). Evolutionarily, these proteins belong to the ancient MADS (MCM1, agamous, deficiens, serum response factor) box family (Black & Olson 1998, Pothoff & Olson 2007, Sivachenko et. al 2013). Mammals have four MEF2 genes: MEF2A, MEF2B, MEF2C and MEF2D. Each gene encodes a protein with a highly conserved MADS-box and MEF2 domains at the N terminus (Pon & Marra 2016). These domains are crucial to dimerization, DNA binding ability and cofactor binding. Between species, these areas are more than 80% conserved (Crittenden et. al 2018). C-terminal transcriptional activation domains are less conserved and can undergo complex splicing patterns. In mammals, MEF2's role is highly dependent on which cofactors are present (Crittenden et. al 2018). For example, in culture, MEF2 and Nkx2.5, MEF2 and MASH1 and MEF2 and myogenin coactivate to induce cardiac muscle formation, neuronal phenotypes and skeletal muscle differentiation, respectively (Crittenden et. al 2018)..

Given this complexity, studying MEF2 in *Drosophila*, which possess a single copy of the gene (*Mef2*) can help understand MEF2's conserved roles in a streamlined way. Like mammalian species, *Drosophila Mef2* has been shown to be essential for the differentiation of numerous cell lines (Crittenden et. al 2018). Neuronally, *Mef2* is localized in Kenyon neurons,



which make up the mushroom bodies in the fly brain. *Mef2* is crucial to mushroom body formation in the embryonic fly brain as null or hypomorphic *Mef2* mutants exhibit significantly fewer differentiated mushroom body neurons (Crittenden et. al 2018). Additionally, adult flies with *Mef2* mutations were found to have abnormal wings showing that the gene is essential to normal wing development (Crittenden et. al 2018). *Mef2* has also been shown to be required for the daily fasciculation/defasciculation cycle in small ventral lateral neurons (s-LNv) and contribute clock information to neuronal remodeling machinery (Sivachenko et. al 2013).

As previously detailed, *Mef2* is a transcription factor (Black & Olson 1998). Sivachenko et. al conducted a ChIP-seq using fly brains that revealed that 342 fly genes were bound by *Mef2*. (Sivachenko et. al 2013) These fly genes are orthologous to over 500 human genes. *Mef2* and the genes it binds are the main focus of this thesis project.

## 3b. Mef2 influences ethanol sedation in Drosophila melanogaster

*Mef2* has been shown to influence ethanol sedation in *D. melanogaster*. As previously outlined, initial resistance to ethanol is a key predictor of later alcohol abuse in humans. The SRE is a questionnaire designed to elucidate whether a person has a high or low initial sensitivity to alcohol (Schuckit 1997). A meta-analysis of two population based GWAS studies of SRE interrogating upwards of 18,000 genes showed that 37 were nominally significant (p < 0.001) for SRE (Schmitt et. al 2019). Schmitt et. al found that 29 of those 37 genes had appropriate *Drosophila* orthologs and ultimately selected nine human genes (APP, BORC8, MEF2B, GPD2, ISL1, PCDH15 and SFSWAP) to follow up on based on reports suggesting their potential involvement in behavior or neurological disease (Schmitt et. al 2019).

The nine chosen genes are orthologous to 12 fly genes (Schmitt et. al 2019). RNAi transgenes against each gene of interest was expressed in fly neurons using the GAL4-UAS system with a neuron specific GAL4 driver (*elaV*-GAL4) and UAS-RNAi construct (Schmitt et. al 2019). Sedation experiments were performed for each RNAi. Three separate RNAi transgenes



against and mutations in *Mef2* were shown to increase ST50 values compared to controls (Schmitt et. al 2019). Additionally, another study reported that pan-neuronal expression of *Mef2* RNAi increases ethanol sensitivity and dominant negative *Mef2* in all neurons or mushroom bodies alone decreases tolerance (Adhikari et. al 2018). This study also reported that *Hr38*, a gene downstream of *Mef2*, influences ethanol tolerance and preference behaviors (Adhikari et. al 2018)

#### 4. Significance

As previously discussed, AUD is a significant public health concern and a leading cause of injury, development and progression of various physical and mental diseases, loss of productivity and preventable death in the US and abroad (NIAAA 2016, WHO 2018). Treatment options are limited. Only three medicines are approved to treat AUD: disulfiram, naltrexone and acamprosate (Kranzler & Soyka 2018). These drugs have distinct mechanisms. Disulfiram for example, causes negative symptoms like nausea and skin flushing when an individual consumes alcohol. If a person knows that drinking will cause these side effects, they may be deterred from consumption. Naltrexone and Acamprosate are aimed at curbing cravings by targeting neural reward systems (Kranzler & Soyka 2018). However, these options are limited and rates of relapse are high. Behavioral counseling is also a viable treatment option; however, many rates of relapse are high (Kranzler & Soyka 2018, Melemis 2015).

Given the level of conservation between humans and *D. melanogaster*, experiments in flies can be powerful avenues to identify candidate genes relevant to alcohol related behaviors. AUD is a complex disease, and better understanding the molecular genetic mechanisms underlying pathogenesis of the disease is a springboard for developing more robust therapeutic interventions to help those experiencing AUD or other forms of alcohol dependence in the future.



#### CHAPTER 2: RNAi SCREEN OF CANDIDATE GENES DOWNSTREAM OF MEF2

## 1. Introduction & rationale

Studies in the Grotewiel laboratory demonstrated that mutations in *Mef2* or neuronal expression of RNAi transgenes against Mef2 decrease ethanol sensitivity in flies (Schmitt et. al 2019). Additionally, Wolf and co-workers (Adhikari et. al 2018) reported that pan-neuronal expression of Mef2 RNAi increases ethanol sensitivity in flies and that dominant negative Mef2 in all neurons or mushroom body neurons alone decreases ethanol tolerance. This study also showed that genes regulated by *Mef2* play a role in ethanol related behaviors. *Hr38* is a Drosophila homolog of the mammalian Nr4a1/Nr4a2/Nr4a3 gene family (Adhikari et. al 2018). In humans, these genes are transcriptionally activated by MEF2 (Adhikari et. al 2018). When drug naive flies were exposed to ethanol, Hr38 was the only surveyed gene with induced expression (Adhikari et. al 2018). Flies heterozygous for Hr38 were observed to display significantly altered ethanol tolerance and preference (Adhikari et. al 2018). Similarly to mammals, Hr38 was transcriptionally induced by *Mef2*, in the presence of alcohol (Adhikari et. al 2018). In other words, alcohol activates Mef2, allowing it to induce Hr38. Increased levels of Hr38 were associated with higher tolerance and increased preferences for alcohol, but did not have an effect on ethanol sensitivity. Another group performed ChIP-seq on DNA isolated from fly heads and identified 342 Mef2-bound genes (Sivachenko et. al 2013). Exploring the function of genes downstream of *Mef2* in ethanol sedation is a primary goal of this thesis, and particularly, of this chapter.

Given that *Mef2* regulates ethanol sedation (Schmitt et. al 2019, Adhikari et. al 2018), is a transcription factor (Black & Olson 1998; Taylor & Hughes 2017), is known to bind 342 genes in flies (Sivachenko et. al 2013) and at least one gene downstream of *Mef2* (*Hr38*) influences ethanol tolerance and preference (Adhikari et. al 2018), we hypothesized that other genes downstream of *Mef2* play a role in ethanol sedation. We began testing this hypothesis by identifying genes of interest by determining the intersection of (i.e. overlap between) genes



bound by *Mef2*, genes associated with human externalizing behavior (Dick, personal communication 2020, Linnér et. al 2020), genes known to influence fly and worm alcohol behavior (reviewed in Grotewiel & Bettinger 2015), human genes associated with expression changes related to alcohol consumption (Silviu Bacanu, personal communication) and genes related to human/mouse disease linked genes and gene ontology (Michael Miles, personal communication). This approach identified the genes *spin*, *unc79*, *Bx*, *CtBP*, *Fas2* and *For* as being bound by Mef2, associated with externalizing behavior in humans, and (for *spin*) associated with alcohol consumption in humans. These six genes of interest were therefore high priority candidates that I investigated for roles in fly ethanol sedation.

#### 1a. Functions of genes of interest

The functions of the genes of interest are quite varied. *spin* is the fly ortholog of the human *SPINS1* gene. In flies, the *spin* gene encodes a multi-pass transmembrane late endosomal/lysosomal protein (Kim 2017, Sweeney & Davis 2002). *spin* is known to be involved in nervous system development, cell death control and is required for TGF-β signaling (Kim 2017). Additionally, *spin* is involved in eye development via control of glial cell migration in flies (Yuva-Aydemir et. al 2011). Loss of function *spin* mutants displayed patterns of early endosome recycling. This led to accumulation of autophagosomes and autolysosomes, leading to abnormal head growth (Kim 2017). *spin* mutant females are also known to avoid mating (Kim 2017). Previous work by Katlyn Myers in the Grotewiel laboratory found that neuronal expression of RNAi transgenes against *spin* and transposon insertions in or near the *spin* locus made flies resistant to ethanol sedation, strongly suggesting the gene is involved in ethanol sedation sensitivity (Myers 2020).

*unc79* is the fly ortholog of the human *UNC79* gene. In flies, it is known to be involved in sleep homeostasis and locomotor activity (Joiner et. al 2013). The fly Narrow Abdomen (NA) ion channel is orthologous to the mammalian NALCN sodium leak channel (Joiner et. al 2013). In



both humans and flies, NALCN/NA function in clock neurons to support behavioral rhythmicity. Loss of function mutations in *unc79* lead to serious defects in circadian locomotor rhythmicity (Lear et. al 2013). Immunoprecipitation and tissue specific RNAi experiments show that *unc79* operates in pacemaker neurons (Lear et. al 2013). *unc79* is also involved in behavioral responses to anesthetics. Flies with loss of function mutations in *unc79* display an increased response to anesthesia (Joiner et. al 2013). *unc79* is also known to be involved in alcohol behaviors in worms (reviewed in Grotewiel & Bettinger 2015). Worms with mutations in *unc-79*, the worm ortholog of the human *UNC79* gene were found to be dramatically hypersensitive to ethanol exposure in regards to swimming behavior (Speca et. al 2010). Additionally, the same study found that mice with a point mutation in the mouse homolog of unc-79 were similarly sensitive to alcohol exposure, as well as exhibiting a high preference for alcohol (Speca et. al 2010), suggesting a conserved function of the gene.

*Beadex* is the fly ortholog of the human gene *LMO1* (Milan et. al 1998). *Bx* encodes the dLMO transcription factor, which contains two conserved LIM homeodomains (Milan et. al 1998). This gene is known to be involved in cytoskeletal organization, cell specification and differentiation and organ development (Milan et. al 1998). Misexpression of dLMO is associated with disturbed dorsal-ventral boundaries and wing patterning and extraneous wing growth (Zeng et. al 1998). Additionally, flies with a loss of function point mutation in *Bx* showed enlarged abdomens due to decreased gastric emptying (Ren et. al 2014). *Bx* is also involved in blood cell development. Knockdown mutants of *Bx* are associated with an increased crystal cell count (Chatterjee et. al 2019). In addition, *Bx* is involved in follicle cell development. To that end, it has been shown to be essential to female reproduction (Karaimkonda & Nongthomba 2018). Eggs of female flies with decreased levels of *Bx* have multiple defects due to its involvement in follicle cell development (Kairamkonda & Nongthomba 2018). *Bx* is known to be involved in alcohol behaviors in flies (Grotewiel & Bettinger 2015). Flies with loss of function (LOF) mutations in *Bx* display increased resistance to ethanol, whereas flies with an overexpression construct of the


gene exhibit the opposite phenotype (Lasek et. al 2011). This relationship has also been observed in mice, suggesting a conserved effect of the gene (Lasek et. al 2011)

*CtBP* is the fly ortholog of the human gene of the same name. It is a transcriptional coregulator and plays a role in regulating gene expression (Hoang et. al 2010). Hoang et. al found that *Drosophila CtBP* interacts with other proteins to mediate gene expression at multiple stages of eye development to prevent over proliferation of eye precursors (Poortinga et. al 1998). Additionally, *CtBP* has been reported to inhibit the Wnt signaling pathway by blocking  $\beta$ -catenin from binding T-cell factors (Poortinga et. al 1998). Interestingly, Fang et. al found that *CtBP* is involved in activating targets of the Wnt signalling pathway and blocks expression of Wnt targets (Fang et. al 2006). *CtBP* is known to be involved in alcohol behaviors in worms (Grotewiel & Bettinger 2015). Worms with mutations in *ctbp-1*, the worm ortholog of the human *CTBP* gene displayed increased time to develop acute functional tolerance, or the normalization of neural function in spite of the presence of alcohol, compared to wild type worms (Bettinger et. al 2012). Additionally, worms with increased expression of *ctbp-1* displayed faster development of AFT and resistance to alcohol (Bettinger et. al 2012).

*Fas2* is the fly ortholog of the human neural cell adhesion molecule (*NCAM*). Both are part of the Ig (immunoglobulin) domain superfamily and possess homophilic cell-cell adhesion mediator activity (Neuert et. al 2020). Sivachenko et. al found that *Mef2* negatively regulates *Fas2*, and both genes are involved in circadian rhythm control (Sivachenko et. al 2013) in flies. *Fas2* is a player in neuron-glia signaling and has several isoforms that display different membrane attachment patterns and cytoplasmic domains (Neuert et. al 2020). Additionally, *Fas2* is involved in organ morphogenesis, nervous system development and synapse organization (Neuert et. al 2020). Mao et. al showed that *Fas2* inhibits EGFR (epidermal growth factor receptor) signaling during development of the eyes, wings and notum, as decreased levels of *Fas2* are associated with EGFR hyperactivity phenotypes (Mao & Freeman 2009).



2015). Loss of function *Fas2* mutants displayed increased sensitivity to ethanol vapors when tested using an inebriometer (Cheng et. al 2001). Expression of *Fas2* transgenes did not rescue this phenotype, suggesting that the role the gene plays in ethanol sensitivity is complex (Cheng et. al 2001).

For is the fly ortholog of the human gene *PRKG1*. For encodes a cGMP (cyclic guanosine-3', 5'-monophosphate)-dependent protein kinase and is known to be expressed in ellipsoid-body ring neurons in flies (Kent et. al 2009). Previous studies have shown that flies and larvae harboring for mutations display altered learning patterns and associative olfactory learning (Kunz et. al 2012). Additionally, for is known to be involved in visual pattern memory and visual orientation memory. for has naturally occurring isoforms: for<sup>S</sup>, or "sitter" and for<sup>R</sup>, or "rover" (Wang et. al 2008). Flies with the sitter variant have lower cGMP-dependent protein kinase levels and display both deficient visual pattern and visual orientation memory (Wang et. al 2008). Rover and sitter variants have altered movement and socialization patterns. As their name implies, rover larvae move further while foraging for food, whereas sitters tend to group together collectively (Wang et. al 2008). Rovers also display longer short-term memory and are more sensitive to heat, hypoxia and starvation, but can resist starvation stress (Wang et. al 2008). On the other hand, sitters show better learning patterns while in groups, showing that for is guite important in fly behavior (Wang et. al 2008). It is known to be involved in worm alcohol behaviors (reviewed in Grotewiel & Bettinger 2015). Worms with mutations in egl-4, the worm ortholog of the human PRKG1 gene display normal responses to ethanol when they are drug naive, but do not display symptoms of withdrawal (Mitchell et. al 2010).



# 2. Materials & methods

### 2a. Fly husbandry and stocks

Flies were raised in an environmental chamber operating on a 12-hour light/dark cycle at 25°C and 60-65% relative humidity. *Drosophila* food medium consisted of 10% sugar, 3.3% cornmeal, 2% yeast, 1% agar, 0.1 g/L ampicillin, 0.125 g/L chloramphenicol, 2 g/L tegosept, 0.02 g/L tetracycline and live yeast (Schmitt et. al 2019).

Twenty-one RNAi transgenes against the six genes of interest were obtained either from the Bloomington *Drosophila* Stock Center (BDSC, Bloomington, IN) or the Vienna *Drosophila* RNAi Center (VDRC, Vienna, Austria) (Table 1). Whenever possible, multiple RNAi transgenes were ordered per gene of interest. The VDRC online interface was used to assess the number of predicted off-target effects of each RNAi from this stock center. VDRC defines an "on-target" as any gene that is a perfect match to at least 80% of a construct's 19-mers, or 19 nucleotide length sequences (Dietzl et. al 2007). Off-targets are defined as any genes that matches to less than 80% of a construct's 19-mers, but possesses at least one match (Dietzl et. al 2007). Each RNAi is assigned a specificity score ( $s_{19}$ ), calculated as  $s_{19} = \sum$ (on target matches) /  $\sum$ (on target matches) (Dietzl 2007). A specificity score of 0.5 indicates a gene that matches perfectly to a construct 50% of the time, or a gene that is considered on-target (Dieztl et. al 2007). Only VDRC RNAi transgenes with less than two predicted off target effects were used.

## 2b. Identification of fly-human gene orthologs

Fly genes bound by *Mef2* (Sivachenko et. al 2013) were converted to their human orthologs by calculating DIOPT scores using the DIOPT – DRSC Integrative Ortholog Prediction Tool version 8 (Hu et. al 2011, DRSC). DIOPT allows for rapid identification of orthologous genes by integrating several approaches to allow users to identify the most appropriate orthologs for further analysis (Hu et. al 2011). The tool reports several metrics, including a



DIOPT score which is determined by the number of predictive tools that have paired the two orthologs (Hu et. al 2011). Higher DIOPT scores indicate increased tools predicting the two genes as an ortholog pair, and is a metric by which to prioritize output gene lists (Hu et. al 2011). In our work, each gene of interest was entered into the website using the appropriate input and output species and only orthologs with a DIOPT score greater than or equal to 5 were considered further.

#### 2c. Ethanol sedation

Ethanol sedation was assessed as described previously (Sandhu et. al 2015, Chan et. al 2014). One to three-day-old female flies were collected in groups of 11 under brief CO<sub>2</sub> anesthesia. All collected flies visually appeared healthy, were of similar size, had normal wings and were not virgins. Eight vials of flies were collected per genotype for a total of 24 vials of flies per experiment to assess an individual RNAi transgene. Collected flies were allowed to recover overnight in inverted, non-yeasted food vials in the environmental chamber (25°C, 60-65% humidity). Eighty-five % ethanol was made a maximum of 1 week before each sedation experiment. All sedations were conducted in the same behavioral room at 20-23°C, relative humidity at 55-65% and with standard laboratory lighting. Flies were allowed to adjust to the conditions of the room for approximately 60 minutes prior to beginning each experiment.

Prior to beginning each experiment, each vial was randomly assigned an alphanumeric code such that they are in 6 sets of 4 vials each. The experimenter (AT) was blind to genotypes. Flies were transferred from the food collection tubes they had been housed in overnight to correspondingly labelled empty vials. Vials were sealed with a cotton flug. Flugs were pressed down to a uniform height and the number of immobile flies before any ethanol application was recorded. At 0 minutes, ethanol was added to each vial in the first set at five second intervals and sealed with a silicone plug. At 30 seconds, the number of sedated flies in vial 1 was counted, and each subsequent vial in set 1 was counted at 5 second intervals. Ethanol was



added into the second set of vials every five seconds, and so on. Each vial was tapped and counted every six minutes as described by Sandhu et. al (Sandhu et. al 2015).

The ST50, or amount of time it takes for 50% of the flies in a vial to become sedated was ascertained from a sigmoidal curve fits of the ethanol sedation time-course data (Sandhu et. al 2015). Vials were decoded and sorted by genotype. ST50 values were compiled for each genotype.

#### 2d. Testing genes of interest in ethanol sedation

The effect of each RNAi transgene on ethanol sedation was assessed in individual experiments with three genotypes, each derived from three crosses performed in parallel. The *elav*-GAL4 driver stock was used to express each RNAi transgene pan-neuronally. Additionally, two other genotypes, an *elav*-GAL4 control and an RNAi control were also tested for ST50 using the ethanol sedation assay outlined in the following section to determine whether the RNAi-expressing group displayed significant ethanol sedation resistance or sensitivity compared to controls. All crosses are outlined in Table 2. All flies tested were in an F1 hybrid genetic background consisting of 50% w[A] (Grotewiel laboratory stock) and 50% w[VDRC] (the background used to generate most RNAi transgenes).

# 2e. Statistical analyses

Fisher's exact test was performed in R Studio (R Studio Version 1.4.1717). The exact script used was provided by Dr. Michael Miles' lab and is in the appendix.  $p \le 0.05$  was considered significant. One-way analysis of variance (ANOVA) and Bonferroni's multiple comparisons (BMC) were performed using GraphPad Prism version 9 for each sedation experiment. P  $\le$  0.05 was considered the threshold for statistical significance.



| Genotype                                                         | Stock # | Description                            | Source |  |
|------------------------------------------------------------------|---------|----------------------------------------|--------|--|
| w1118; P{GD2579}v8392                                            | 8392    | Fas2 RNAi                              | VDRC   |  |
| w1118; P{GD2579}v8393                                            | 8393    | Fas2 RNAi                              | VDRC   |  |
| w1118; P{GD14486}v36350                                          | 36350   | Fas2 RNAi                              | VDRC   |  |
| w1118; P{GD14486}v36351                                          | 36351   | Fas2 RNAi                              | VDRC   |  |
| P{KK100888}VIE-260B                                              | 103807  | Fas2 RNAi                              | VDRC   |  |
| y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF02918}attP2 e[*]           | 28990   | Fas2 RNAi                              | BDSC   |  |
| y[1] sc[*] v[1] sev[21]; P{y[+t7.7] v[+t1.8]=TRiP.HMS01098}attP2 | 34084   | Fas2 RNAi                              | BDSC   |  |
| P{KK108401}VIE-260B                                              | 107313  | <i>CtBP</i> RNAi                       | VDRC   |  |
| y1 v1; P{TRiP.JF01291}attP2/TM3, Ser1                            | 31334   | <i>CtBP</i> RNAi                       | BDSC   |  |
| y1 sc* v1 sev21; P{TRiP.HMS00677}attP2                           | 32889   | CtBP RNAi                              | BDSC   |  |
| w1118; P{GD6843}v38319                                           | 38319   | For RNAi                               | VDRC   |  |
| P{KK101298}VIE-260B                                              | 101298  | <i>For</i> RNAi                        | VDRC   |  |
| y1 v1; P{TRiP.JF01449}attP2/TM3, Ser1                            | 31698   | For RNAi                               | BDSC   |  |
| y1 sc* v1 sev21; P{TRiP.GL00026}attP2                            | 35158   | For RNAi                               | BDSC   |  |
| y1 sc* v1 sev21; P{TRiP.HMS04486}attP40                          | 57041   | For RNAi                               | BDSC   |  |
| y1 v1; P{TRiP.JF03390}attP2                                      | 29454   | <i>Bx</i> RNAi                         | BDSC   |  |
| y1 sc* v1 sev21; P{TRiP.GL00484}attP2/TM3, Sb1                   | 35637   | <i>Bx</i> RNAi                         | BDSC   |  |
| y1 sc* v1 sev21; P{TRiP.HMC04776}attP40                          | 57465   | <i>Bx</i> RNAi                         | BDSC   |  |
| P{KK102682}VIE-260B                                              | 108132  | unc79 RNAi                             | VDRC   |  |
| w1118; P{GD11587}v45780                                          | 45780   | unc79 RNAi                             | VDRC   |  |
| y1 sc* v1 sev21; P{TRiP.HMC03213}attP2                           | 51471   | unc79 RNAi                             | BDSC   |  |
| y[1] v[1]; P{y[+t7.7] v[+t1.8]=TRiP.JF02782}attP2                | 27702   | <i>spin</i> RNAi                       | BDSC   |  |
| w1118; P{GD5039}v15550                                           | 15550   | <i>Mef</i> 2 RNAi                      | VDRC   |  |
| w[VDRC]                                                          | N/A     | VDRC control strain, w <sup>1118</sup> | VDRC   |  |
| w[A]                                                             | N/A     | lab control strain, w <sup>1118</sup>  | BDSC   |  |

**Table 1.** Genotypes, stock numbers and ordering source of all stocks used in subsequent experiments.



| <b>Virgin</b> ♀   | ð       | Group              |
|-------------------|---------|--------------------|
| <i>elav</i> -GAL4 | w[VDRC] | elav-GAL4 control  |
| w[A]              | RNAi    | RNAi control       |
| elav-GAL4         | RNAi    | Presumed knockdown |

**Table 2.** Three crosses set up and resulting groups. These crosses were set up for each RNAi used.



## 3. Results & Discussion

### 3a. Identifying genes of interest

Considering that Mef2 is a transcription factor (Black & Olson 1998; Taylor & Hughes 2017) that influences ethanol behaviors in flies and possibly humans (Schmitt 2019, Adhikari 2019), we hypothesized that genes bound (and presumably regulated) by Mef2 would be good candidates for functioning downstream of Mef2 to regulate ethanol sedation. We also hypothesized that additional human genetic information could be used to prioritize genes bound by Mef2 as downstream mediators of Mef2. Toward testing these two interrelated hypotheses, we used DIOPT (DRSC, Hu et. al 2011) to convert the 342 genes bound by Mef2 (Sivachenko et. al 2013) to 581 human orthologs. Dr. Danielle Dick's laboratory had identified 928 human genes associated with externalizing behavior (defined as a group of behaviors that are directed outwardly and pertain to self-regulation). Examples include substance abuse, antisocial disorder and poor impulse control (Dick et. al 2020); Danielle Dick, personal communication 2020; Linnér et. al 2020), and further found that 39 of the 581 human orthologs of genes bound by Mef2 were associated with externalizing behaviors (Table 3, first column; Danielle Dick, personal communication 2020). Although Fisher's exact test indicates that the overlap of 39 genes between the human orthologs of Mef2 bound genes and 928 human externalizing behavior genes is not significant (Table 4), these genes might still ultimately prove to be high-priority candidates for roles in ethanol behavior given their connections to Mef2 and/or externalizing behavior.

I compared the 36 unique fly genes that are bound by Mef2 (Table 3) and are orthologous to 39 human genes that were associated with externalizing behavior (Table 3, Linnér et. al 2020) to a comprehensive list of 91 and genes involved in at least one aspect of fly alcohol behavioral responses (reviewed by Grotewiel & Bettinger 2015). I then converted these genes to their worm orthologs and compared them to a list of genes involved in worm alcohol responses (reviewed by Grotewiel & Bettinger 2015).



| Human Gene | Mef2 bound | DIOPT Score | p-value   |  |
|------------|------------|-------------|-----------|--|
|            | fly gene   |             |           |  |
| NCAM1      | Fas2       | 11          | 1.59E-48  |  |
| SEMA6D     | Sema1a     | 8           | 1.00E-39  |  |
| SDK1       | sdk        | 10          | 6.98E-36  |  |
| PDE4B      | dnc        | 12          | 2.03E-25  |  |
| CELF2      | aret       | 14          | 6.65E-20  |  |
| PRKG1      | for        | 13          | 3.15E-15  |  |
| PHC2       | ph-p       | 6           | 8.54e-14  |  |
| BIRC6      | Bruce      | 15          | 2.60E-13  |  |
| NFAT5      | Nfat       | 7           | 2.67E-11  |  |
| NFIA       | nfl        | 12          | 5.83E-11  |  |
| CHD3       | mi-2       | 12          | 25.96E-11 |  |
| CALB1      | Cbp53e     | 10          | 8.32E-11  |  |
| FXR1       | Fmr1       | 12          | 3.37E-10  |  |
| UNC79      | unc79      | 14          | 5.18E-10  |  |
| CALB2      | Cbp53e     | 11          | 1.08E-09  |  |
| LONRF2     | CG32369    | 12          | 1.20E-09  |  |
| FMNL2      | Frl        | 11          | 1.68E-09  |  |
| PTPRN2     | IA-2       | 10          | 1.75E-09  |  |
| СҮРЗА43    | Cyp9f2     | 8           | 2.69E-09  |  |
| MLLT10     | Alh        | 6           | 3.43E-09  |  |
| MEF2C      | Mef2       | 11          | 4.09E-09  |  |
| OAZ3       | Oda        | 7           | 4.54E-09  |  |
| SCL17A3    | CG3649     | 6           | 5.84E-09  |  |
| ASPG       | CG6428     | 13          | 6.00E-09  |  |
| ARIH2      | ari-2      | 15          | 1.20E-08  |  |
| IGF1R      | InR        | 12          | 3.34E-08  |  |



| MAPT     | tau    | 7  | 5.67E-08 |
|----------|--------|----|----------|
| MAP4     | tau    | 6  | 8.14E-08 |
| SLC22A12 | CG8654 | 6  | 8.42E-08 |
| ISYNA1   | Inos   | 13 | 1.12E-07 |
| EXT1     | ttv    | 13 | 1.25E-07 |
| PFKFB2   | Pfrx   | 11 | 2.06E-07 |
| SPNS1    | spin   | 13 | 2.09E-07 |
| REEP1    | ReepA  | 8  | 9.14E-07 |
| LMO3     | Bx     | 7  | 1.02E-06 |
| СҮРЗА5   | Cyp9c1 | 8  | 1.23E-06 |
| CYP3A4   | Cyp6wi | 9  | 1.49E-06 |
| PDE4D    | dnc    | 10 | 1.71E-06 |
| CTBP1    | CtBP   | 12 | 2.45E-06 |

**Table 3.** Thirty-nine human genes implicated in externalizing behaviors, their respective fly orthologs, DIOPT scores and whether the gene is present in the list of the 342 *Mef2* bound fly genes. P-value refers to the Bonferroni corrected p-value of the association of the gene with human externalizing behavior. P < 2.74E-6 is considered significant.



| Gene Set 1                                               | Gene Set 2                                   | Genome                              | Overlap  | Expected | Odds Ratio | p-value |
|----------------------------------------------------------|----------------------------------------------|-------------------------------------|----------|----------|------------|---------|
| 581 human<br>orthologs of<br><i>Mef</i> 2 bound<br>genes | 928 human<br>externalizing<br>behavior genes | # genes<br>interrogated<br>(18,235) | 39 total | 29.5678  | 1.2070     | 0.2729  |

**Table 4.** Fisher's exact test to determine whether the number of genes overlapping between the human orthologs of Mef2 bound genes and externalizing behavior genes.



This identified six high priority candidate genes (*Bx*, *CtBP*, *Fas2*, *For*, *spin*, *unc79*) that are all bound by *Mef2* (Sivachenko et. al 2013), have orthologs associated with human externalizing behavior (Dick, personal communication 2020, Linner et. al 2020) and have been previously reported to be involved in or have orthologs that are involved in fly or worm alcohol behaviors (Grotewiel & Bettinger 2015). The steps taken to identify these six candidate genes are outlined in Figure 1.

The gene spin was previously examined as a locus involved in ethanol sedation by Katlyn Myers, a student in the Grotewiel lab as part of her Master's thesis. Within human orthologs of the 342 Mef2-bound genes (Sivachenko et. al 2013), a GSCAN (GWAS & Sequencing Consortium of Alcohol and Nicotine Use, Dr. Silviu Bacanu, personal communication) identified 15 genes including spin as being nominally associated with gene expression changes associated with alcohol consumption (Bacanu, unpublished). Katlyn found that flies expressing an RNAi transgene targeting spin pan-neuronally and flies with transposon insertions near or in the spin locus had increased ST50 values (Myers and Grotewiel, unpublished). We also searched for our other five candidate genes (Bx, CtBP, Fas2, For, unc79) within the GSCAN data. Additionally, we searched for our six candidate genes within data from a compilation of gene ontology and human/mouse disease linked genes from Dr. Miles' lab (Michael Miles, personal communication). These additional analyses via Drs. Bacau and Miles did not further implicate the candidate genes in ethanol behavior. In summary, we identified six genes or orthologs of genes for further study that are bound by Mef2, known to be involved in fly or worm alcohol behavior, and associated with externalizing behavior (Table 5). One of these six genes, spin, is also associated with gene expression changes related to alcohol consumption (Table 5).





**Figure 1.** Outline of the steps taken to identify high priority candidate genes for possible roles in ethanol sedation. Initial *Mef2* bound genes identified by Sivachenko et. al (Sivachenko 2013) were converted to human orthologs, filtered by human genes involved in human externalizing behavior, converted back to fly and worm orthologs and then filtered against lists of genes known to be involved in fly and worm alcohol behaviors.



| Fly gene | Human<br>gene | Mef2<br>bound? | Previously<br>implicated<br>in fly/worm<br>alcohol<br>behavior? | <b>Dick</b><br>(rank, p<br>value) | Bacanu<br>(rank, p<br>value) | <b>Miles</b><br>(rank, p<br>value) |
|----------|---------------|----------------|-----------------------------------------------------------------|-----------------------------------|------------------------------|------------------------------------|
| Fas2     | NCAM1         | yes            | yes – fly                                                       | 2<br>(1.44E-48)                   | 50<br>(0.082)                | not present                        |
| CtBP     | CTBP          | yes            | yes – worm                                                      | 798<br>(5.36E-07)                 | 65<br>(0.139)                | 149<br>(0.008)                     |
| Bx       | LMO3          | yes            | yes – fly                                                       | 773<br>(4.27E-07)                 | 61<br>(0.112)                | 254<br>(0.026)                     |
| For      | PRKG1         | yes            | yes – worm                                                      | 73<br>(8.44E-15)                  | 403<br>(1)                   | not present                        |
| unc79    | UNC79         | yes            | yes – worm                                                      | 358<br>(1.20E-09)                 | 440<br>(1)                   | 427<br>(0.116)                     |
| spin     | SPNS1         | yes            | yes – fly                                                       | 575<br>(5.11E-08)                 | 4<br>(6.78E-08)              | 293<br>(0.038)                     |

**Table 5.** Six candidate genes, their human orthologs, their past implication in fly or worm alcohol behavior, ranking and adjusted p-values from Dr. Dick's analyses of human externalizing behaviors and Dr. Bacanu's work on gene expression changes related to alcohol consumption. Rank and p-value represent the represent the relative order of the gene on gene of interest, and all p-values indicate that each gene is significantly associated with the phenotype being studied.



#### 3b. Confirmation and testing of roles for genes in ethanol sedation

To confirm that neuronal expression of RNAi targeting Mef2 makes flies resistant to ethanol sedation as the Grotewiel laboratory previously reported (Schmitt et. al 2019), I assessed ethanol sedation in flies with the *elav*-Gal4 (pan-neuronal driver) expressing a validated RNAi transgene against *Mef2* (v15550). Expression of v15550 in neurons (*elav*-Gal4/+;v15550/+) increased ST50 values compared to both controls (elav-Gal4/+ and v15550/+; Figure 2A). Knockdown of *Mef2* in neurons therefore made flies resistant to ethanol sedation in my studies as previously reported by the Grotewiel laboratory (Schmitt et. al 2019).

To test the role of the 6 candidate genes (Table 5) in ethanol sedation, we expressed RNAi transgenes targeting each of the genes in neurons via *elav*-Gal4 with the same overall approach as used for *Mef2* (Figure 2A). Expression of *spin* RNAi (*elav*-GAL4/+;JF02782/+) increased ST50 compared to both the *elav*-GAL4/+ and JF02782/+ controls (Figure 2B). My data on *spin* JF02782 RNAi confirm those of Katlyn Myer (Myers and Grotewiel, unpublished). Furthermore, Katlyn also found that transposon insertions in the *spin* locus increased ST50 values. Together, data from my and Katlyn's studies strongly suggest that *spin* influences ethanol sedation in flies.

Regarding the other 5 candidate genes (Table 5), expression of the *unc79* v45780 RNAi transgene (*elav*-GAL4+/v45780/+) significantly increased ST50 compared to the *elav*-GAL4 control, but not the v45780/+ control (Figure 3A). Neuronal expression of the KK102682 RNAi transgene (*elav*-GAL4+/KK102682/+) increased ST50 compared to both the *elav*-GAL4/+ and KK102682/+ controls (Figure 3B). The standard ethanol sedation protocol used for the studies in Figures 3A and 3B in the Grotewiel laboratory exposes flies to vapor from 85% ethanol. To explore the possibility that the effect of expressing *unc79* RNAi might depend on the concentration of ethanol used, these experiments were repeated using vapor from 65% ethanol. At this lower concentration of ethanol, expression of both RNAi transgenes (v45780 and



KK102682) significantly increased resistance compared to both controls (Figures 3C and 3D). Expression of another *unc79* RNAi transgene (*elav*-GAL4/+;HMC03213/+) was lethal. Taken together, these experiments show that *unc79* may influence ethanol sedation, as multiple RNAi transgenes against the gene result in significant increases in ST50.

Experiments with RNAi transgenes targeting the remaining four genes were less informative. Expression of a Bx RNAi transgene (elav-GAL4/+;JF03390/+) and a CtBP RNAi transgene (elav-GAL4/+;JF01291/+) did not significantly increase resistance or sensitivity to ethanol compared to the respective controls (Figures 4 and 5). Expression of other Bx (elav-GAL4/+;KK108513/+, elav-GAL4/+;GL00484/+) and CtBP RNAi transgenes (elav-GAL4/+;KK108401/+, elav-GAL4/+;HMS00677/+) were lethal. Expression of the v8393 Fas2 RNAi (elav-GAL4/+;v8393/+) significantly increased resistance compared to both controls (Figure 6A). Expression of four other Fas2 RNAi's, (elav-GAL4/+;v36350/+; elav-GAL4/+;v8392/+; elav-GAL4/+;HMS01098/+ and elav-GAL4/+;JF02918/+) significantly changed ST50 values compared to one control (Figures 6B, 6C, 6D, 6E), but the direction of the change (resistance vs. sensitivity) was not consistent. Expression of another Fas2 RNAi transgene, v36351 (*elav*-GAL4/+;v36351/+) did not produce any significant changes (Figure 6F) and the KK100888 transgene (elav-GAL4/+;KK100888/+) was lethal. Expression of the for RNAi transgenes v38319 and GL00026 (elav-GAL4/+;v38319/+ and elav-GAL4/+;GL00026/+) significantly increased resistance compared to one control group (Figure 7A, D), whereas expression of two other for RNAi transgenes JF01449 and KK101298 (elav-GAL4/+;JF01449/+ and *elav*-GAL4/+;KK101298/+) did not produce significant changes (Figure 7B, C). Expression of another for RNAi transgene, HMS04486 (elav-GAL4/+;HMS04486/+) was lethal. Overall, my data on Bx, CtBP, Fas2 and for did not support the hypothesis that these genes function in neurons to regulate ethanol sedation.



#### 3c. Discussion

*spin, unc79, Bx, CtBP, Fas2* and *for* are all *Mef2*-bound genes that were previously shown to influence ethanol behaviors in flies or (via orthologs) worms and have human orthologs that were associated with externalizing behavior. They were therefore lead candidates for influencing ethanol sedation by functioning downstream of *Mef2*. Expression of RNAi transgenes targeting *spin* and *unc79* (Figure 2 and Figure 3) consistently changed ST50 values compared to RNAi and *elav*-Gal4 controls. All viable RNAi transgenes against *unc79* produced an effect in the same direction and at two concentrations, though the v45780 (*elav*-GAL4/+;v45780+) was significantly different from both control genotypes only when using vapor from 65% ethanol. These results implicate *spin* and *unc79* in ethanol sedation and also raise the possibility that ethanol sedation (assessed in *Drosophila*) and externalizing behavior (assessed in humans) might be driven or influenced by shared genetic mechanisms as similarly suggested by studies in worms and humans (Mathies et. al 2017).

Expression of neuronal RNAi targeting the other candidate genes did not consistently impact ST50. This lack of effect could be explained by several possibilities including (i) the genes do not affect ethanol sedation by functioning in neurons, (ii) the RNAi transgenes did not sufficiently knockdown expression of their target genes or (iii), that lethality associated with constitutive, pan-neuronal expression RNAi transgenes is preventing us from observing the phenotype. To better understand the potential role of these genes in ethanol sedation, future studies could include expression of the transgene only in adulthood or with a different GAL4 driver that would express the transgene in select neurons, rather than pan-neuronally, thereby circumventing lethality associated with elav-Gal4 pan-neuronal expression. Additionally, genetic manipulation of the genes via mutations, overexpression or expression of dominant negatives could also provide insight into the role of these genes in ethanol sedation.





**Figure 2.** Confirmation that expression of *Mef2* and *spin* RNAi in neurons increases ST50 values. Data presented are ST50 values of flies with pan-neuronal expression of (A) *Mef2* (*elaV*-Gal4;v15550) and (B) *spin* (*elaV*-Gal4;JF02782) RNAi along with their respective controls (v15550/+, JF02782/+ and *elaV*-Gal4/+) exposed to vapor from 85% ethanol. Overall, genotype significantly affected ST50 (individual one-way ANOVAs, p<0.0001 for both panels, n=8). Expression of the *Mef2* (*elaV*-Gal4;v15550) and *spin* (*elaV*-Gal4;JF02782) RNAi transgenes increased ST50 compared to their respective controls. (Bonferroni's multiple comparisons, lines indicate pairwise comparisons with resulting p values above each line).





**Figure 3.** ST50 values of flies with pan-neuronal expression of *unc79* RNAi exposed to vapor from 85% (A, B) or 65% (C, D) ethanol. Data presented show RNAi expressing (A, C: *elaV*-Gal4;v45780; B, D: *elaV*-Gal4;KK102682) flies and their respective controls (v45780/+, KK102682/+ and *elaV*-Gal4/+). Genotype significantly affected ST50 values in all studies (individual one-way ANOVAs: A, p=0.0332, n=16; B, p<0.0001, n=16; C, p<0.0001, n=8; D, p<0.0001, n=8). ST50 values in RNAi expressing groups were significantly higher than both controls for all planned comparisons except for *elaV*-Gal4;v45780 vs 45780/+ in panel A. (Bonferroni's multiple comparisons, lines indicate pairwise comparisons with resulting p values above each line).





**Figure 4.** ST50 values of flies with pan-neuronal *Bx* RNAi (*elaV*-Gal4;JF03390) and controls (JF03390/+, *elaV*-Gal4/+) exposed to vapor from 85% ethanol. Genotype did not significantly affect ST50 (one-way ANOVA p=0.4001, n=8).





**Figure 5.** ST50 values of flies with pan-neuronal expression of *CtBP* RNAi (*elaV*-Gal4;JF01291) and controls (JF01291/+, *elaV*-Gal4/+) exposed to vapor from 85% ethanol. Genotype did not significantly affect ST50 (one-way ANOVA p=0.0772, n=8).





**Figure 6**. ST50 values of flies with pan-neuronal expression of *Fas2* RNAi (A, *elav*-Gal4;v8393; B, *elav*-Gal4;v36350; C, *elav*-Gal4;8392; D, *elav*-Gal4;HMS01098; E, *elav*-Gal4;JF02918; F, *elav*-Gal4;v36351) and their respective controls (v8393/+, v36350/+, v8392/+, HMS01098/+, JF02918/+, v36351/+ and *elav*-Gal4/+) exposed to vapor from 85% ethanol. Overall, genotype significantly affected ST50 in all studies except those in panel F (individual one-way ANOVAs; A, p<0.0001; B, p=0.0023; C, p=0.0002; D, p=0.0304; E, p=0.0073; F, p=0.1256; n=8). ST50 in flies expressing RNAi were different than both controls in panel A, and different than one control in panels B, C, D and E (Bonferroni's multiple comparisons, lines indicate pairwise comparisons with resulting p values above each line).





**Figure 7.** ST50 values of flies with pan-neuronal expression of *For* RNAi (A, *elaV*-Gal4;v38319; B, *elaV*-Gal4;KK101298; C, *elaV*-Gal4;JF01449; D, *elaV*-Gal4;GL00026) and their respective controls (v38319/+, KK101298/+, JF01449/+, GL00026/+ and *elaV*-Gal4/+) exposed to vapor from 85% ethanol. Overall, genotype significantly affected ST50 in all studies (individual one-way ANOVAs; A, p=0.0126; B, p=0.0474; C, p=0.0378; D, p=0.0013; n=8). Pan-neuronal expression of (A) v38319 (*elaV*-Gal4;v38319) increased ST50 compared to both controls, whereas expression of (D) GL00026 (*elaV*-Gal4;GL00026) RNAi increased ST50 compared to only a single control. Expression of the KK010298 (C) and JF01449 (D) transgenes did not significantly change ST50 relative to either controls (Bonferroni's multiple comparisons, lines indicate pairwise comparisons with resulting p values above each line).



# **CHAPTER 3: IDENTIFICATION OF MEF2-DEPENDENT GENE EXPRESSION CHANGES**

# **1. Introduction and Rationale**

Identifying gene expression changes in response to *Mef2* knockdown can help us begin to explore and understand mechanisms pertaining to ethanol sedation. To get a picture of global gene expression changes that result from *Mef2* knockdown, we performed an RNA-seq experiment comparing gene expression levels in three groups: *elav*-gal4/v15550/+ *Mef2* knockdown (hereafter KD), an *elav*-GAL4/+ control (hereafter Gal4) and a v15550/+ RNAi control (hereafter RNAi). Specific questions we addressed are:

- Are any of our six previously identified genes of interest (detailed in Chapter 2) regulated by *Mef2*?
- Are any of the 342 genes that bind *Mef2* (Sivachenko et. al 2013) regulated by *Mef2*?
- Are any known fly or worm alcohol genes (reviewed in Grotewiel & Bettinger 2015) regulated by *Mef2*?
- Are fly orthologs of previously identified genes implicated in human SRE (Schmitt 2019) regulated by *Mef2*?
- Are fly orthologs of genes implicated in human externalizing behaviors (Dick 2020, personal communication; Linnér et. al 2020) regulated by *Mef2*?
- What gene ontology terms are over-represented in the Mef2-dependent differentially expressed genes?

We hypothesized that knockdown of *Mef2* would result in expression changes in genes represented by each of these lists. Additionally, we hypothesized that gene ontology analysis would reveal biological processes in which the Mef2-dependent differentially expressed genes function. Together, we predicted that this study would mechanistically connect *Mef2* with genes previously implicated in alcohol-related behavior and relevant biological processes.

## 2. Materials and Methods



### 2a. Drosophila husbandry

Flies were grown under the same conditions described in Chapter 2. Each week, three crosses were set up in parallel: *elav*-GAL4 virgin females were crossed to v15550 (*Mef2* RNAi) males to express the *Mef2* RNAi pan-neuronally (hereafter KD for knock-down), w[A] virgin females were crossed to v15550 RNAi males to generate the RNAi controls (hereafter RNAi), and *elav*-GAL4 virgin females were crossed to w[VDRC] males to generate the *elav-Gal4* controls (hereafter Gal4). All progeny were in a uniform F1 hybrid genetic background of 50% w[A] and 50% w[VDRC].

At one to three days of adulthood, approximately 350 female flies of each genotype were collected under brief CO<sub>2</sub> anesthesia. Flies were collected in a rotating manner in regard to genotype. As an illustration, in collection one, KD flies were collected first, then RNAi flies, followed by Gal4 flies. In collection two, RNAi flies were collected first, then Gal4 flies and subsequently, KD flies. The order of genotypes collected from each subsequent round of crosses was similarly rotated to avoid batch effects. Flies were collected under CO<sub>2</sub> and immediately transferred to a 50 mL conical tube on water ice. The tube was labelled with the genotype and number of flies collected, and quickly transferred to a -80°C freezer. Flies were on water ice for a maximum of two minutes before being transferred to the freezer. The process was repeated with the next genotype of that week's collection, and so on. After one bottle of females was collected of all three genotypes, the cycle was repeated, beginning with the first genotype and working through that week's order of collections until approximately 350 flies of each genotype were collected per cross. This was repeated weekly until six collections were obtained.

# 2b. Isolation of fly heads

Heads were isolated in batches from approximately 250 frozen flies of each genotype. Liquid nitrogen and dry ice were collected in a dewar and styrofoam box, respectively, from the



Sanger Hall supply center. Head preps were performed in the same rotating order as the fly collections outlined in the previous section. All head collections were performed at 4°C.

Holes were punched through the lid of a 50 mL conical tube using a heated 18-gauge needle. The tubes of flies of the first genotype were removed from the -80°C freezer, kept on dry ice and filled with approximately 35 mL of liquid nitrogen. The cap with holes was screwed on and the tube was vortexed for approximately one minute or until all the liquid nitrogen dissipated. This was repeated, filling the tube with about 25 mL of liquid nitrogen for a second round of vortexing. Vortexing flies in liquid nitrogen causes heads, wings, legs, abdomens and thoraxes to break apart.

A sieve was used to separate the bodies of the flies from the heads. Prior to adding flies to the sieve, it was confirmed that the layers of the sieve were in the correct order and liquid nitrogen was slowly poured into the sieve to ensure it was cold enough to prevent flies from sticking to it. Flies were added to the top layer of the sieve and the sieve was repeatedly struck laterally with forceps for at least three minutes to help move the fly body parts to various levels of the sieve. Heads, representing the smallest body parts, were collected in the bottom vessel of the sieve.

Collected heads were transferred into labelled 1.7 mL snap-cap tubes and kept on dry ice, then quickly transferred to a -80°C freezer. The bodies of the flies were quickly examined under the microscope to ensure that heads were actually separated from other body parts. The sieve was cleaned and dried and the process was repeated with the next two genotypes in the order determined for that week. Throughout the head isolations, protective gear such as safety glasses, a lab coat and cryo-gloves were worn. This procedure was repeated for all six collections. The full protocol is in the Appendix.

### 2c. Preparation of RNA



Prior to beginning RNA preps, the lab bench, pipettes, pipette boxes and anything else on the lab bench were wiped down thoroughly with 100% ethanol. Plastic pestles were placed into a 50 mL conical tube and covered with chloroform (to inactivate RNAses) under the fume hood. After soaking for 20 minutes, the pestles were transferred to a new tube and allowed to dry for another 20 minutes.

Total RNA was isolated using a combination of a previously published protocol (Weston et. al 2021; Lee et. al 2021) and Qiagen reagents. Tubes of fly heads were retrieved from the 80°C freezer and immediately placed on ice. For the rest of the RNA extraction protocol, samples were processed in a rotating order in regard to genotype, as described in previous sections. A chloroform-soaked pestle was properly secured to an electric drill. 50 µL of Trizol (ThermoFisher Scientific) was very slowly added to the first tube of heads and homogenized with the drill for 30 s. Another 200 µL of Trizol was added to the same vial, and the flies were again homogenized for 90 s. This was repeated with all remaining genotypes. 100 µL of chloroform was added to each vial. Vials were then vortexed for 15 seconds and incubated at room temperature for 3 minutes. Samples were taken to the cold room and centrifuged at 14,000 x g for 15 minutes. After centrifugation, new vials were labelled for each genotype and the upper aqueous layer was transferred to the appropriate new vial, taking care not to pipette any fly parts or other layers. Qiagen RNeasy Mini Kit and on-column DNase digestion protocols were performed per the manufacturer's instructions (Qiagen), with a final elution in 60 µl of RNase free water. Eluted RNA samples were stored at -80°C until being sent for sequencing. The full protocols are in the Appendix.

### 2d. Initial RNA quality assessments

Concentration and initial quality assessments were performed by taking absorbance readings of 1:20 dilutions of each sample at 260 nm and 280 nm using a Pharmacia Biotech Ultraspec 2000 spectrophotometer. From these values, RNA concentration and the A260/A80



ratio were calculated. Generally, an A260/280 ratio of between ~1.8 - 2.1 is indicative of purified RNA (ThermoFisher Scientific 2012).

1:20 dilutions of all samples were also run on the Agilent Bioanalyzer as an additional measure of concentration and to assess RNA quality (performed by Sati Afshari in Dr. Babette Fuss' laboratory, Virginia Commonwealth University). The Bioanalyzer calculates an RNA integrity (RIN score) from peaks at 28s and 18s ribosomal RNA (rRNA) for mammalian samples; however, fly RNA has a double peak at 18s, precluding the calculation of a reliable RNA integrity number (RIN). Therefore, I assigned grades (A, B, C, etc.) to each trace from the Bioanalyzer based on visual inspection noting subjective interpretations of peaks beyond the 28s and 18s peaks (which if present, would indicate degradation). Samples that appeared to have higher degradation were assigned lower scores, and those with decreased degradation received higher grades. The five sets of three samples each that overall received the best grades were ultimately sent for sequencing by GeneWiz. The remaining three RNA samples were not analyzed further.

# 2e. RNA-sequencing and related analyses performed by GeneWiz

GeneWiz guidelines recommended sending at least 2 µg of RNA at a minimum concentration of 50 ng/µl per sample. The amount of RNA to send was calculated per sample. For all samples, at least 1.5 times, and whenever possible, double the amount of sample required was sent. Each sample vial was labelled, sealed and packaged in dry ice in a Styrofoam box. The package was overnighted to GeneWiz' facilities in South Plainfield, NJ for standard RNA-seq analysis.

GeneWiz performed their standard bioinformatic analysis as part of the RNA sequencing package. Their overall workflow consisted of assessing RNA integrity, generating cDNA libraries from my RNA samples, sequencing the cDNAs on a single lane of an Illumina Hi-Seq machine with 150 base paired-end reads, evaluating sequence quality, trimming reads, mapping reads to



the BDGP6 version of the fly genome, generating hit counts for genes and exons, comparing counts to assess read depth and differentially expressed genes and analyzing initial gene ontology as outlined in Figure 1. GeneWiz also performed initial differential gene expression analyses with a two-fold cut-off, but we did not use these analyses and instead performed our own differentially expressed gene analysis using iDEP as described below.

#### 2f. Identification of differentially expressed genes and related analyses using iDEP

iDEP9.2 (integrated Differential Expression and Pathway analysis version 9.2) is a webbased tool for exploratory data analysis that integrates R/Bioconductor packages frequently used for RNA-seq analysis, such as DESeq2, to analyze RNA-seq data. It is available at <u>http://ge-lab.org/idep/</u>. Users are able to upload gene expression data and the tool allows detection of differentially expressed genes (DEGs), creation of Venn diagrams to visualize the overlap of DEGs, perform principal component analyses (PCA), identify gene ontology terms and perform pathway analysis.

We uploaded raw read counts received from GeneWiz into iDEP and set the species to *Drosophila melanogaster*. In the pre-processing stage, iDEP allows users to filter out genes that have extremely low read counts (less than 0.5 counts per million). iDEP transforms the data for downstream clustering and PCA analysis. We selected to transform the data using the edgeR package. Using the "plot gene" function of iDEP's pre-processing stage, we plotted levels of specific genes of interest, such as the *white* marker gene and *Mef*2.

Next, we used iDEP to perform principal component analyses. We assessed all possible pairwise combinations of principal components 1-5. We also used iDEP to view differentially expressed genes using the website's "DEG1" tab. We set the method to identify differentially expressed genes to the R/Bioconductor DESeq2 package, the false discovery rate (FDR) to 0.1 and the fold change to 1. This identifies all differentially expressed genes with an adjusted FDR less than or equal to 0.1 regardless of the fold-expression level. We also generated Venn



diagrams of all DEGs, and then specifically of up- and down-regulated DEGs by using the "Venn diagram" tab. On this tab, we also downloaded gene lists of the differentially expressed genes to later filter in MS Excel to understand overlaps between the DEGs and other biologically relevant gene sets.

### 2g. Analysis of overlapping genes

We used the conditional formatting tool in Microsoft Excel (version 1808, Redmond, WA, USA) to determine the overlap between DEGs identified by our analyses in iDEP and other biologically relevant gene sets. Fisher's exact test (R Studio Version 1.4.1717) was used to assess whether the amount of overlap we observed between our DEGs and other gene lists was significantly different than that expected by chance. The R script used was provided by Dr. Michael Miles and Maren Smith (provided in the appendix). P values  $\leq$  0.05 were considered significant.

## 2h. Gene Ontology (GO)

DAVID (Database for Annotation, Visualization and Integrated Discovery version 6.8, https://david.ncifcrf.gov/) was used for gene ontology (GO) analyses. Using the functional annotation tool, we uploaded our list of DEGs into DAVID and set the species to *Drosophila melanogaster*. In the annotation summary results, we looked at the Biological Process (GOTERM\_BP\_DIRECT), Cellular Component (GOTERM\_CC\_DIRECT) and Molecular function (GOTERM\_MF\_DIRECT) tabs to understand the various gene ontology terms tagged and the genes associated with each one. Additionally, we used the "functional annotation clustering" selection for a combined view. Each GO term, the category it was associated with, the genes involved, the percentage of genes involved in the GO term compared to the full list of DEGs, p-values and adjusted p-values were all compiled. P values  $\leq$  0.05 were considered significant.





**Figure 1.** Overall workflow performed by GeneWiz as part of their standard RNA-seq analysis package.



www.manaraa.com

# 3. Results & Discussion

# 3a. Rationale and overall experimental design

Mef2 is a transcription factor (Black & Olson 1998; Taylor & Hughes 2017) that regulates ethanol sedation behaviors (Schmitt et. al 2019; Adhikari et. al 2018). Mef2 binds 342 genes in flies (Sivachenko et. al 2013) and *Hr38*, a gene downstream of *Mef2*, influences ethanol preference and tolerance (Adhikari et. al 2018). Thus, we were interested in identifying other genes downstream of *Mef2*, as these genes may also play a role in ethanol-related behaviors, specifically sedation. Additionally, we hoped to understand the relationship between *Mef2* and individual, previously identified genes connected to ethanol-related behaviors. We hypothesized that an RNA-seq study would both identify genes that were differentially expressed upon *Mef2* knockdown and elaborate on the direction by which *Mef2* regulates its downstream genes.

We had three groups of flies in this experiment, as described in the Methods section of this chapter. The KD group had an RNAi transgene against *Mef2* expressed pan-neuronally, and the elav-Gal4 (Gal4) and RNAi groups served as our two controls. As *Mef2* was knocked down pan-neuronally, we used fly heads as the starting material for RNA isolations. After preparing RNA, it was sent for sequencing and the RNA-seq data we received are the basis of the analyses described in this chapter.

## 3b. RNA & RNA-seq Quality Control Assessments

RNA preps were performed in six sets of three samples each. Each set consisted of one sample of each genotype, and absorbance measurements of 1:20 dilutions of each sample were taken at 260 and 280 nm (A260, A280) to estimate concentration and purity (Koetsier et. al 2019). Pure RNA has an A260/A280 ratio of 2.1; a decreased ratio corresponds to protein contamination (Koetsier et. al 2019). My RNA samples had A260/A280 ratios of 1.85-2.29 and concentrations of 48-733  $\mu$ g/ml (Table 1, columns 3-6), making them suitable for further analysis.



1:10 dilutions of each sample were analyzed on Dr. Babette Fuss' lab's Agilent Bioanalyzer machine. The Agilent 2100 Bioanalyzer system is an automated, microfluidic chipbased electrophoresis machine that has utility in measuring RNA quality for downstream applications (Agilent 2020), in our case, RNA-seq. The machine works by measuring the quality of ribosomal RNA to generate an RNA integrity (RIN) score. RIN scores are an indicator of sample integrity, which has significant implications on downstream applications (Agilent 2020). However, the 18S and 28S eukaryotic RNA ribosomal peaks the machine uses to calculate the RIN score are not consistent with insect RNA, which has a double peak at 18s, rendering it impossible for the BioAnalyzer to generate reliable RIN scores. Therefore, I visually inspected each Bioanalyzer sample trace and assigned each a relative grade (A, B, C, etc.) based on the perceived amount of degradation as indicated by peaks beyond the 18s and 28s rRNA peaks. Figure 2 shows each trace, while Table 1, column 7 shows the grades assigned. Ultimately, the five sets of three samples with the best grades (outlined in black boxes in Table 1) were sent for sequencing. All of the samples sequenced had grades ≥ B.



www.manaraa.com

| Sample | Genotype | Abs <sub>260</sub> | Abs <sub>280</sub> | Abs<br>Ratio | Concentration<br>(µg/mL) | Grade | RIN  | DV200 | Quality<br>score |
|--------|----------|--------------------|--------------------|--------------|--------------------------|-------|------|-------|------------------|
| 1      | KD       | 0.325              | 0.165              | 1.97         | 260.0                    | С     | n/a  | n/a   | n/a              |
| 2      | RNAi     | 0.351              | 0.172              | 2.04         | 280.8                    | В     | n/a  | n/a   | n/a              |
| 3      | Gal4     | 0.378              | 0.182              | 2.08         | 302.4                    | В     | n/a  | n/a   | n/a              |
| 4      | KD       | 0.625              | 0.292              | 2.14         | 500.0                    | B+    | 9.7  | 94.69 | 35.71            |
| 5      | RNAi     | 0.162              | 0.075              | 2.16         | 129.6                    | B+    | 9.8  | 93.27 | 35.69            |
| 6      | Gal4     | 0.595              | 0.280              | 2.13         | 476.0                    | А     | 10.0 | 94.27 | 35.75            |
| 7      | KD       | 0.403              | 0.198              | 2.04         | 322.4                    | А     | 10.0 | 93.01 | 35.73            |
| 8      | RNAi     | 0.134              | 0.068              | 1.97         | 107.2                    | А     | 10.0 | 92.19 | 35.70            |
| 9      | Gal4     | 0.072              | 0.039              | 1.85         | 57.6                     | А     | 9.6  | 92.36 | 35.70            |
| 10     | KD       | 0.917              | 0.421              | 2.18         | 733.6                    | A-    | 10.0 | 94.67 | 35.73            |
| 11     | RNAi     | 0.344              | 0.177              | 1.94         | 275.2                    | A-    | 10.0 | 94.07 | 35.75            |
| 12     | Gal4     | 0.664              | 0.314              | 2.11         | 531.2                    | B+    | 9.9  | 92.92 | 35.76            |
| 13     | KD       | 0.169              | 0.089              | 1.90         | 135.2                    | В     | 9.4  | 92.45 | 35.77            |
| 14     | RNAi     | 0.060              | 0.032              | 1.88         | 48.0                     | В     | 9.4  | 83.36 | 35.75            |
| 15     | Gal4     | 0.160              | 0.060              | 2.67         | 128.0                    | А     | 10.0 | 93.37 | 35.78            |
| 16     | KD       | 0.204              | 0.089              | 2.29         | 163.2                    | B+    | 9.8  | 91.04 | 35.76            |
| 17     | RNAi     | 0.102              | 0.047              | 2.17         | 81.6                     | А     | 10.0 | 94.03 | 35.76            |
| 18     | Gal4     | 0.196              | 0.090              | 2.18         | 156.8                    | B+    | 10.0 | 94.94 | 35.75            |

**Table 1.** RNA sample number and sample genotypes are shown in columns 1 and 2, respectively. Absorbance values at 260 nm, 280 nm, and the ratio between these values (for 1:20 dilutions) are shown in columns 3-5. RNA concentrations based on the A260 values are in column 6. Quality grades based on visual assessments of chromatograms in Figure 2 are shown in t column 7. RIN and DV200 values from GeneWiz are shown in the final two columns.







**Figure 2.** Bioanalyzer traces for each RNA sample. Qualitative grades were assigned to each sample (Table 1, column 7) based on the amount of degradation evidenced by peaks to the left of the 18S doublet. Data generated by Fatemah S. Afshari and Dr. Babette Fuss, Virginia Commonwealth University.


RNA quality control data (RIN and DV200 values) were also provided by GeneWiz (Table 1, columns 8-9). These were determined through the Agilent TapeStation system. Like the Bioanalyzer, this is an automated electrophoresis machine that is used for determining nucleic acid size, concentration and integrity (Graf 2017). GeneWiz provided chromatogram outputs generated via TapeStation and corresponding RIN scores for each sample (Figure 3). Chromatograms are generally consistent, with the largest peaks at the lower end and 18S. Visually, samples with increased noise in the areas between the lower and 18S peaks (such as Figure 3, samples 1 and 6) or smaller 18S peaks (such as Figure 3, samples 10 and 11) tended to have relatively lower RIN scores. Sample 7 is noticeably different from the rest of the samples in that there was an additional peak at 28S and more degradation than other samples. However, the GeneWiz RIN is 10.0 for this sample, and representatives from GeneWiz confirmed the accuracy of the score. Overall, all RNA samples had RINs (Table 1, column 8) that were well above GeneWiz's recommended minimum suggestion of 7 for samples to be sequenced.

To address the accuracy of my grading system, I plotted my grades against the respective RIN values provided by GeneWiz. My grades generally corresponded to the RIN values, and were very strongly correlated with the RIN values (Figure 4). We therefore feel confident that visual grading can be a useful method of analyzing Bioanalyzer traces for *Drosophila* RNA (Figure 2) and (of the 18 RNA samples prepared) that we selected the 15 samples of the highest quality (Table 1).

Another indicator of RNA sample quality is DV200, or percentage of RNA fragments longer than 200 nucleotides. Like sample integrity, fragment size is an important contributor to good library yield and sequencing downstream (Graf 2017). Samples with a DV200 less than 30% are not recommended for downstream applications (Illumina 2016). All of our samples had DV200 values much higher than this minimum threshold, with our lowest DV200 value being 83.36 (Table 1, column 9). Taken together, my subjective grades coupled with the more formal



DV200 and RIN scores from GeneWiz indicate our RNA samples were appropriate for library preparation and sequencing.

Differences in sequencing depth can affect downstream analyses. Data provided by GeneWiz (Figure 5) show that across all samples and genotypes, RNA-seq read counts from our RNA samples were consistent. Quality scores from sequencing ranged from 35.69 - 35.77. Quality score is defined by the formula: Q = -10log<sub>10</sub>(e), where e is the estimated probability of the base call being incorrect (Illumina 2016). Higher scores are indicative of high quality, whereas lower scores are associated with increased rates of false positives and potentially unusable data. Quality scores above 30 indicate a 1 in 1000 chance of a base being called incorrectly and correspondingly, a base call accuracy of 99.9% (Illumina 2016). As all our samples had Q scores well above 30 (Table 1, column 10), we are confident that the sequencing is accurate. Additionally, representatives from GeneWiz confirmed that libraries were generated together and all samples were run on the same lane of the same sequencing machine at the same time to avoid batch effects.

Together, the data in Table 1 and Figures 2-5 indicate that the RNA samples sent for sequencing were of high quality and that the sequencing itself was of high quality, supporting our confidence in the results of this study.





**Figure 3.** TapeStation chromatogram traces and RIN scores provided by GeneWiz. Generally, samples with increased noise between lower and 18S peaks, or relatively smaller 18S peaks have lower RIN scores, though all samples have very high RIN scores. Data generated by GeneWiz.





**Figure 4.** Relationship between the grades assigned to each sample and their RIN scores. RIN values correlated with grades (Spearman correlation, r=0.8238, p=0.005, n=15). Some X-Y pairs overlap others, giving the appearance of less than 15 samples. Line is best-fit linear regression (R<sup>2</sup>=0.6515).



www.manaraa.com



**Figure 5.** Distribution of normalized read counts for all samples, generated by GeneWiz. Panels A, B and C show pairwise comparisons of read counts for KD//Gal4, KD//RNAi and Gal4//RNAi respectively. Each comparison shows that read counts are consistent across all samples.



## 3c. Analysis of Mef2-dependent differentially expressed genes

Principal component analysis (PCA) linearly transforms data (RNA-seq data for my project) to allow for visualization on a two-dimensional plane (GeneWiz). Each principal component accounts for an amount of variance, with principal component 1 accounting for the largest single factor for the variance, and each subsequent component accounting for less (GeneWiz). A priori, we expected to see each genotype cluster separately from the other two. The PCA analysis of the first two components of the RNA-seq data did not show a clean clustering or segregation of the three genotypes (Figure 6A). To determine whether additional principal components might provide cleaner clustering patterns, we generated PCA plots with all possible combinations of principal components 1-5 using iDEP (Figure 6). No combination of principal components 1-5 produced obvious clustering of genotypes (Figure 6), suggesting there might not be large-scale, consistent patterns of differential gene expression across the three genotypes. As part of their analyses, GeneWiz provided a heatmap of the top 30 DEGs (identified by p-value) between the KD and Gal4 groups (Figure 7). The expression levels of these genes in each genotype were very similar, suggesting that these two samples did not have large scale differences in the most significantly differentially expressed genes.

Given that the PCA (Figure 6) and heatmap data (Figure 7) were not consistent with large-scale, substantive changes in *Mef2* expression in knockdown animals, we explored whether sample mishandling at some point in the workflow could have occurred. We addressed this possibility by examining the expression of the *white* gene. *white* is a marker for the RNAi and Gal4 transgenes that we expected to be expressed at a molecular level corresponding to the observable eye pigmentation phenotype regulated by the *white* gene. Of the three genotypes in our study, RNAi flies have the least eye pigmentation, Gal4 flies have an intermediate level of eye pigmentation, and KD flies (because they harbor both the RNAi and Gal4 transgenes) have the strongest eye pigmentation. Reassuringly, levels of *white* were lowest in RNAi flies, intermediate in Gal4 flies, and highest in KD flies (Figure 8). This pattern of



expression level is evident in the mean raw counts as well as the raw counts from individual samples (Figure 8), fully consistent with the recorded genotypes used to generate RNA samples and the RNA-seq data. Additionally, *Mef2* expression was slightly decreased in the KD compared to the two control groups, although this was significantly different only relative to the RNAi control (Figure 8B). Given that expression of this same *Mef2* RNAi transgene in neurons using the same elav-Gal4 driver decreases expression of Mef2 protein in the central fly brain (Schmitt et. al 2019), we believe that the marginal knockdown of *Mef2* observed in our RNA-seq study is likely due to endogenous expression of *Mef2* in other head tissues including head muscle (Velasco et. al 2006) contributing to the overall *Mef2* read counts. Importantly, the *white* and *Mef2* expression levels from the RNA-seq data strongly indicate that no sample mishandling or mislabeling occurred that could explain the somewhat unexpected similarities in gene expression in our three genotypes.

In many transcriptomics studies, including those from flies using Gal4 to express RNAi transgenes (e.g. Nitta 2017, Picchio 2013, Zeng 2018), differentially expressed genes (DEGs) are defined relative to a single Gal4 control. The standard design of experiments using Gal4 to drive transgene expression (like our study), however, has two control genotypes, one for the Gal4 driver alone and another for the RNAi transgene alone. We therefore identified and analyzed *Mef*2-dependent DEGs using two approaches. In the first approach, we defined DEGs relative to the Gal4 control alone. In the second approach, we defined DEGs as being consistently changed relative to both the Gal4 alone and the RNAi alone. Additionally, we tabulated DEGs between the Gal4 and RNAi controls themselves.

Using a false discovery rate of 0.1 (Ge et. al 2018) and allowing for any level of foldchange, we found 172 DEGs in KD vs Gal4 fly head RNA samples (Figure 9, Table 2). This KD//Gal4 set of DEGs was of principal interest and was further analyzed below. Unexpectedly, we found that the number of DEGs (1,063) was considerably greater in KD//RNAi fly heads, and was even greater (2,238) in Gal4//RNAi (Figure 9). The overlap between these three sets of



DEGs followed a pattern generally consistent with their sizes (Figure 10). There were 51 genes common to the 172 KD//Gal4 and 1,063 KD//RNAi DEGs. These 51 KD//Gal4//RNAi DEGs are differentially expressed in KD compared to both controls, also warranting their further analysis below.

Although we do not understand why the greatest number of DEGs was found between the two control genotypes, this relatively large number of DEGs is not related to differences in genetic background (both controls are in the same F1 hybrid genetic background), RNA sample or sequence quality (Table 1, Figures 2 and 3), batch effects due to the order of sample preparation or sequencing (see earlier descriptions of experimental design), or sample misidentification (Figures 8A, 8B). Additionally, this relatively large number of DEGs does not appear to have a major effect on ethanol sedation (Chapter 2, Figure 2A). It is possible that the large gene expression differences between controls is driven by the insertion of the v15550 RNAi transposon. However, if that were the case, we would also expect to observe these DEGs in the KD//Gal4 group, which we largely do not. Given that we frankly do not have a satisfactory explanation for this large set of DEGs at this time and that this set of DEGs does not seem to be a major driver of ethanol sedation, we did not further analyze them.





Figure 6. PCA plots showing all combinations of two PCAs for the first 5 components.





**Figure 7.** Clustering heatmap provided by GeneWiz to show the similarity between the top 30 DEGs (sorted by p value) between the KD//Gal4. Samples 1, 4, 7, 10 and 13 (light blue cluster) are the KD group and samples 3, 6, 9, 12 and 15 (dark blue cluster) are the Gal4 group. The scale represents the log2 transformed expression values of each DEG.





Mef2



**Figure 8.** Raw read counts of the *white* (Panel A), *Mef2* (Panel B) genes across three genotypes. As expected, for the *white* gene (A), the KD group has highest counts, followed by the Gal4 group, and lastly, the RNAi group (one-way ANOVA p<0.0001) For *Mef2* (B), the KD group did display decreased levels of gene expression, but was only statistically significant when compared to the Gal4 group (one-way ANOVA p=0.0335). (n=5 per genotype; Bonferroni's multiple comparisons, lines indicate pairwise comparisons with resulting p values above each line).





Figure 9. Number of DEGs for each comparison with FDR of 0.1 and any fold change.





**Figure 10.** Venn Diagram showing the overlap between all sets of DEGs with FDR of 0.1 and any fold change. Figure generated from iDEP



## 3d. Analysis of KD//Gal4 DEGs

Of 172 KD vs Gal4 DEGs, 148 genes had detectable expression in high throughput studies of adult fly brains (FlyAtlas-RNA.adult, FB2021 03 and Table 2). Of these 148 genes, 51 had moderate to high to very high expression and an additional 52 had lower, but detectable, expression in fly brains (Table 2). Eight-seven percent of the set of 172 DEGs is therefore known to be expressed in the fly brain, increasing our confidence that our overall experimental design identified potential molecular determinants of brain function and behavior. The 172 DEGs were examined for enrichment for categories of the gene ontology terms Biological Processes, Cellular Components and Molecular Function (Table 3). However, among all categories, only the cellular adhesion term was significantly enriched, based on the Benjamini adjusted p-value (Table 3). The Benjamini-Hochberg Procedure is a form of multiple testing corrections to minimize false discovery (Huang et. al 2009). Additionally, the 172 DEGs represented four annotation clusters (Table 4). (Huang et. al 2009) The largest of these clusters contains terms for oxido-reduction processes, while the other clusters involve GTPase activity, extracellular matrix components, and splicesomes; however, the only significant term based on the Benjamini-Hochberg adjusted p-value is endoplasmic reticulum membrane (Table 4). We also performed functional annotation clustering, a measure of the extent of shared genes between annotations (Huang et. al 2009) All enriched GO terms and functional annotation clusters are included in Tables 3 and 4 for completeness. The set of 172 DEGs might be involved in a very wide range of biological, cellular and molecular processes.



| Gene                                         | Function                                                                                                 | Up- or<br>down-<br>regulated | FDR      | Expressed in neurons?  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|----------|------------------------|
| Actin 87E                                    | involved in cell motility and muscle contraction                                                         | down                         | 0.044    | low (25.6)             |
| Amylase<br>proximal                          | dietary enzyme required to hydrolyze starch                                                              | down                         | 0.004    | no data                |
| Cytochrome<br>p450 6a2                       | involved in breakdown of synthetic insecticides and insect hormone metabolism                            | up                           | 5.50E-55 | low (47.7)             |
| Pka-C3                                       | encodes a cAMP-dependent protein kinase                                                                  | down                         | 0.000194 | moderate<br>(276.9)    |
| engrailed                                    | encodes a homeodomain-containing transcription factor needed to posterior compartment identity           |                              | 0.072957 | low (14.5)             |
| Fas3                                         | encodes a cell adhesion molecule                                                                         |                              | 0.006449 | moderate<br>(284.5)    |
| FER tyrosine kinase                          | encodes a tyrosine-protein kinase involved in formation of actin cables during embryogenesis             |                              | 0.000409 | low (98.9)             |
| fushi tarazu                                 | predicted to play a role in specifying neuronal identity and known to be required in embryogenesis       | up                           | 1.36E-12 | no expression<br>(1.3) |
| Heat shock<br>protein 68                     | encodes a protein involved in determination of lifespan and response to heat shock and starvation        | down                         | 0.004797 | low (27.6)             |
| Ecdysone-<br>inducible gene<br>L2            | involved in embryogenesis and normal nervous system development                                          |                              | 0.004864 | moderate<br>(421.7)    |
| knirps-like                                  | encodes a nuclear hormone receptor with C4 zinc finger motif and no ligand-binding domain                | down                         | 0.054153 | no expression<br>(4.1) |
| l(2)tid                                      | predicted to be a tumor suppressor in larval imaginal disks                                              |                              | 2.11E-11 | moderate<br>(200.6)    |
| lethal (3)<br>malignant<br>blood<br>neoplasm | tumor suppressor involved in normal blood cell proliferation                                             | down                         | 0.045032 | no expression<br>(4.6) |
| CG2150                                       | predicted to be a structural component of chitin-based cuticle and localize to the extracellular matrix  | down                         | 0.041810 | no expression<br>(6.9) |
| Punch                                        | isoforms are involved in eye pigment production and normal embryonic segmentation                        | down                         | 0.009554 | moderate<br>(119.6)    |
| pawn                                         | encodes a protein involved in chaeta morphogenesis                                                       | down                         | 0.047142 | no expression<br>(3.7) |
| Ras oncogene<br>at 85D                       | encodes a protein that regulates normal tissue growth and development                                    | down                         | 0.035028 | very high<br>(1042.5)  |
| raw                                          | encodes a membrane protein involved in dendritic patterning and localization of JNK signaling components | down                         | 0.006410 | moderate<br>(292.9)    |
| shotgun                                      | calcium-dependent cell adhesion protein and has roles in cell sorting, oogenesis and body asymmetry      | down                         | 2.46E-31 | no expression<br>(9)   |
| scarlet                                      | encodes a protein component involved in transport of pigment precursor to pigment cells                  |                              | 0.030551 | no expression<br>(5.1) |



| white                                 | ABC-type guanine transporter involved in transporting cyclic GMP, various amines and pigments                                           | up   | 4.06E-119 | low (13)               |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------|-----------|------------------------|
| Cysteine string protein               | encodes a protein that is essential to maintaining synaptic down 0.046875 function                                                      |      | 0.046875  | very high<br>(1093.9)  |
| Recombination repair protein 1        | involved in cellular response to oxidative stress via DNA repair mechanisms                                                             | down | 0.032122  | moderate<br>(107)      |
| Juvenile<br>hormone<br>esterase       | involved in ethanol response and catabolism of juvenile hormone                                                                         | up   | 0.043431  | no expression<br>(3.7) |
| Signal<br>recognition<br>particle 54k | thought to be involved in GTPase activity                                                                                               |      | 0.027455  | moderate<br>(195.5)    |
| ALG3                                  | predicted to be involved in regulating the tumor necrosis factor-<br>mediated signalling pathway                                        | up   | 0.002876  | low (66.6)             |
| Heat shock<br>protein 70Bb            | encodes a protein involved in heat shock and hypoxia response                                                                           |      | 2.98E-45  | no data                |
| Troponin C at<br>41C                  | encodes a protein that binds calcium and regulates muscle contraction                                                                   | down | 0.000239  | no expression<br>(3.3) |
| Rho-like                              | involved in hemocyte maturation do                                                                                                      |      | 0.000138  | low (72)               |
| Histone H3.3A                         | variant histone that is enriched in active chromatin                                                                                    | up   | 0.071674  | high (636)             |
| cutlet                                | thought to aid in DNA clamp loader activity and be a positive regulator of DNA polymerase activity                                      |      | 2.49E-07  | low (10.4)             |
| a-Esterase-8                          | has carboxylesterase activity                                                                                                           | down | 0.081458  | low (84.3)             |
| Rab7                                  | encodes a GTPase that is involved in regulation of vesicle trafficking                                                                  | down | 0.006512  | very high<br>(1056.9)  |
| late bloomer                          | facilitates synapse formation                                                                                                           | up   | 0.013701  | low (30)               |
| Phm                                   | encodes a hydroxylating monooxygenase that is essential to neuropeptide biosynthesis                                                    | down | 0.012614  | no data                |
| drongo                                | thought to have GTPase activator activity and involvement in regulating GTPase activity                                                 | down | 0.001262  | moderate<br>(453.5)    |
| piopio                                | encodes a zona pellucida domain protein that is involved in apical epithelial adhesion                                                  | down | 0.005852  | no data                |
| Oxysterol<br>binding protein          | encodes a protein involved in sperm development                                                                                         | up   | 1.37E-07  | moderate<br>(299.8)    |
| Splicing<br>regulatory<br>protein 54  | encodes a protein involved in regulating alternative splicing, selecting a transcriptional start site and processing the 3' end of mRNA | down | 0.093683  | moderate<br>(240.2)    |
| Bicoid<br>interacting<br>protein 1    | recruits Sin3A-HDAC1 by interacting with transcription factor                                                                           |      | 0.006512  | moderate<br>(172.1)    |
| PRL-1<br>phosphatase                  | encodes a growth inhibitor                                                                                                              | down | 0.042707  | high (608.8)           |
| Rab27                                 | encodes a Rab GTPase that is involved in exosomal secretion                                                                             | down | 0.001413  | moderate<br>(270.5)    |



| P                                           |                                                                                                                           |      | 1        |                        |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|----------|------------------------|
| Adenosine<br>kinase 3                       | has adenosine kinase activity                                                                                             | down | 6.90E-30 | moderate<br>(435.7)    |
| Prolyl-tRNA<br>synthetase,<br>mitochondrial | has proline-tRNA ligase and prolyl-tRNA aminoacylation activity                                                           | up   | 0.077856 | low (62.8)             |
| lilipod                                     | encodes a transmembrane protein that promotes ovarian stem cell maintenance                                               | up   | 0.003229 | moderate<br>(177.3)    |
| Carbonic<br>anhydrase 2                     | encodes a dehydratase that is involved in catalyzing the hydration and dehydration of carbon dioxide                      | down | 2.25E-08 | low (22.9)             |
| Sulfonylurea receptor                       | predicted to encode an ATP-sensitive K[+] channel                                                                         |      | 0.010093 | low (24.2)             |
| Replication<br>factor C 38kD<br>subunit     | predicted to be involved in DNA clamp loading and DNA repair kD                                                           |      | 0.000214 | low (79.7)             |
| CG3823                                      | thought to have phosphatidylinositol biphosphate binding activity                                                         | up   | 0.074056 | low (7.3)              |
| CG4615                                      | predicted to be involved in cytolysis                                                                                     |      | 2.11E-11 | moderate<br>(301.9)    |
| CG1636                                      | known to be expressed in the adult head                                                                                   | down | 0.015781 | moderate<br>(165.5)    |
| CG8034                                      | predicted to be involved in monocarboxylic acid transport and have monocarboxylic acid transmembrane transporter activity |      | 0.098764 | low (28.8)             |
| Odorant-<br>binding protein<br>19b          | thought be involved in smell perception and have odorant binding activity                                                 |      | 0.062071 | no expression<br>(6.1) |
| galectin                                    | encodes a galactoside binding protein with involvement in target recognition                                              | up   | 0.050380 | moderate<br>(853.7)    |
| CG3345                                      | expressed in spermatozoa                                                                                                  | up   | 0.045032 | low (14.9)             |
| CG4213                                      | known to expressed in the embryonic brain                                                                                 | down | 0.042814 | no expression<br>(2.4) |
| CG14340                                     | thought to be involved in vesicle-mediated transport                                                                      | down | 0.006512 | low (57.1)             |
| CG5397                                      | thought to localize to the extracellular space                                                                            | down | 0.002797 | low (29.3)             |
| calcutta-cup                                | thought to localize to the membrane and endomembrane system                                                               | up   | 4.66E-05 | no expression<br>(1.2) |
| papi                                        | involved in the piwi-interacting RNA metabolic process                                                                    | down | 0.011749 | moderate<br>(192.6)    |
| CG17224                                     | predicted to have uridine phosphorylase activity and have nucleoside metabolic and catabolic processes                    | up   | 0.019329 | low (37.3)             |
| CG17264                                     | no information                                                                                                            | up   | 0.000822 | low (16.3)             |
| Cytochrome<br>p450 28d2                     | could be involved in metabolizing insect hormones and breakdown of insecticides                                           | down | 0.043661 | low (27.5)             |
| Cytochrome<br>p450 6a16                     | thought to have heme and iron ion binding activity and monooxygenase activity                                             | down | 0.088621 | no expression<br>(5.8) |



| CG9107                                                | predicted to be involved in rRNA procession, ribosomal subunit assembly and nucleic acid binding activity | up   | 0.001391 | no data                |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------|----------|------------------------|
| CG9147                                                | thought to have catalytic activity                                                                        | down | 0.002013 | low (96.6)             |
| Arylalkylamine-<br>N-<br>acetyltransfera<br>se-like 2 | has acyl-coA-N-acyltransferase and aralkylamine N-<br>acetyltransferase activity                          | up   | 3.72E-19 | low (42.9)             |
| farjavit                                              | encodes lysophospholipid acyltransferase                                                                  | up   | 0.003083 | moderate<br>(342.7)    |
| CG11319                                               | is involved in proteolysis and dipeptidyl-peptidase activity                                              | down | 0.007751 | high (729.2)           |
| CG5973                                                | has phosphatidylinositol biphosphate binding activity                                                     |      | 0.042707 | moderate<br>(103.8)    |
| CG13133                                               | thought to be involved in protein folding                                                                 |      | 0.044090 | no expression<br>(1.2) |
| CG4839                                                | thought to have cGMP-dependent protein kinase activity and be involved in protein phosphorylation         | up   | 0.006983 | no expression<br>(2.2) |
| CG10383                                               | encodes a hydrolase that regulates glycosylphosphatidylinositol metabolism                                | up   | 0.071674 | low (87.3)             |
| Tetraspanin<br>42Ej                                   | encodes a lysosomal protein essential to degrading endocytosed rhodopsin                                  | down | 6.28E-13 | high (991.3)           |
| Growth arrest<br>and DNA<br>damage-<br>inducible 45   | interacts with JNK pathway and affects egg asymmetry                                                      | down | 1.80E-10 | low (43.8)             |
| CG12164                                               | no information                                                                                            | down | 1.52E-05 | no expression<br>(1.6) |
| CG11123                                               | has RNA binding activity and involvement in ribosome biogenesis                                           | up   | 0.001391 | low (50.4)             |
| Death resistor<br>Adh domain<br>containing<br>target  | encodes an alcohol dehydrogenase enzyme that is involved in ethanol-induced apoptosis                     | down | 0.015354 | very high<br>(1364.2)  |
| CG2064                                                | has NADP-retinol dehydrogenase activity                                                                   | up   | 0.000313 | low (47.1)             |
| Transmembran<br>e protein 63                          | has calcium activated cation channel activity                                                             | down | 0.054427 | moderate<br>(150)      |
| CG12910                                               | thought to have UDP-galactosyltransferase and N-glycan processing activity                                | up   | 0.044090 | low (43.7)             |
| Cuticular<br>protein 47Ef                             | thought to be a structural component of chitin-based cuticle                                              | down | 0.006449 | no data                |
| CG10257                                               | involved in I-kappaB kinase/NF-kappaB signalling                                                          | down | 0.050380 | moderate<br>(113.2)    |
| CG8157                                                | no information                                                                                            | down | 0.071674 | no expression<br>(3.8) |
| CG15706                                               | localizes to the membrane                                                                                 | down | 0.028913 | low (69.1)             |
| CG15617                                               | expressed in the adult head                                                                               | up   | 0.072325 | no expression          |



|                                                                       |                                                                                                                                        |      |                   | (3.3)                  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|------------------------|
| resilin                                                               | encodes a component of the extracellular matrix                                                                                        | down | 0.006449          | no data                |
| CG6472                                                                | thought to have lipase activity and be involved in lipid catabolism                                                                    | down | 0.025441          | no expression<br>(3.6) |
| CG6805                                                                | has phosphatidylinositol-4,5-biphosphate 5-phosphatase activity<br>and be involved in inositol phosphate dephosphorylation             | down | 4.95E-21          | moderate<br>(111)      |
| CG15611                                                               | has guanyl-nucleotides exchange factor activity and is involved in endoplasmic reticulum stress                                        |      | 0.006247          | low (64.6)             |
| Lysyl oxidase-<br>like 2                                              | predicted to have protein-lysine 6 oxidase activity and be involved d in cell adhesion                                                 |      | 5.96E-09          | no expression<br>(5.4) |
| Odorant-<br>binding protein<br>56a                                    | predicted to aid in the transport of hydrophobic odorants                                                                              |      | 0.021457          | no expression<br>(3.4) |
| Odorant-<br>binding protein<br>56h                                    | predicted to aid in the transport of hydrophobic odorants                                                                              |      | 1.51E-32          | low (13.1)             |
| CG11099                                                               | no information                                                                                                                         | down | 0.013701          | high (863.1)           |
| CG13869                                                               | no information                                                                                                                         |      | 0.000578          | no expression<br>(8.3) |
| EF-hand<br>domain<br>containing 1.2                                   | thought to have alpha-tubulin binding activity and be involved in cilium assembly                                                      |      | 0.032580          | low (11.8)             |
| dim γ-tubulin 3                                                       | plays a role in centrosome-independent spindle microtubule generation and is a part of the augmin complex                              | down | 0.001022          | no expression<br>(6.3) |
| Lysyl oxidase-<br>like 2                                              | predicted to have protein-lysine 6 oxidase activity and be involved in cell adhesion                                                   | down | 5.96E-09          | no expression<br>(5.4) |
| CG11475                                                               | thought to be involved in regulating response to DNA damage,<br>protein methylation and have enzyme binding an phosphatase<br>activity | up   | 0.002458          | no expression<br>(6)   |
| Golgi matrix<br>protein 130 kD                                        | encodes a protein involved in Golgi organization                                                                                       | up   | 8.59E-08          | moderate<br>(130.8)    |
| Cytochrome<br>p450 6d2                                                | involved in detoxifying toxic compounds and encodes a cytochrome p460 oxidase protein                                                  | up   | 0.016460          | no expression<br>(7.6) |
| nahoda                                                                | known to be expressed in the adult head                                                                                                | down | 0.069003          | low (26.2)             |
| CG3500                                                                | thought to be involved in endoplasmic reticulum to Golgi vesicle mediated transport                                                    | up   | 0.071674          | moderate<br>(132.5)    |
| eukaryotic<br>translation<br>initiation factor<br>2B subunit<br>delta | /otic thought to have translation initiation involvement<br>ation<br>on factor<br>bunit                                                |      | 4.06E-10          | moderate<br>(113.1)    |
| CG5554                                                                | predicted be involved in cell redox and homeostasis and be involved in disulfide oxidoreductase activity                               | down | 1.39E-19          | moderate<br>(385.4)    |
| Kahuli                                                                | encodes a transcription factor                                                                                                         |      | 0.0503809<br>2274 | no expression<br>(1.3) |



| spatzle 5                                             | acts as a ligand in promoting motor axon targeting and neuronal survival in the CNS                      | down | 0.006983 | no expression<br>(2.1) |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|----------|------------------------|
| CG1136                                                | thought to be a structural constituent of chitin-based larval cuticle                                    | down | 0.070749 | low (29.4)             |
| CG13705                                               | known to be expressed in the embryonic dorsal epidermis                                                  | down | 0.054153 | no expression<br>(8.3) |
| CG9953                                                | has dipeptidyl-peptidase activity and thought to play a role in proteolysis                              | down | 1.00E-08 | moderate<br>(416)      |
| CG13670                                               | thought to be a structural constituent of chitin-based larval cuticle                                    | up   | 3.37E-05 | no expression<br>(1)   |
| Valyl-tRNA<br>synthetase,<br>mitochondrial            | thought to have valine-tRNA ligase activity and to be involved in valyl-tRNA aminoacylation              | down | 0.050380 | low (55.9)             |
| CG5653                                                | thought to have polyamine oxidase activity d                                                             |      | 3.45E-05 | no expression<br>(5.1) |
| CG4461                                                | involved in heat response                                                                                |      | 0.081458 | no expression<br>(6)   |
| Aps                                                   | encodes a diphosphoinositol-polyphosphate diphosphatase with<br>hydrolysis functions                     | down | 0.082274 | moderate<br>(386.9)    |
| Corazonin<br>receptor                                 | involved in ethanol-induced behavior and ethanol metabolism                                              | up   | 0.051862 | low (55)               |
| CG13458                                               | thought to localize to the mitochondrial inner membrane                                                  | down | 0.045032 | low (48.1)             |
| CG17027                                               | has inositol monophosphate 1-phosphatase activity and be involved in inositol metabolic processes        |      | 0.005325 | low (24.6)             |
| mitochondrial<br>ribosomal<br>protein S31             | thought to be a structural component of the ribosome and be involved in translation                      |      | 3.13E-07 | moderate<br>(237.1)    |
| artichoke                                             | encodes a leucine-rich extracellular matrix protein that contributes to cilium assembly and integrity    | up   | 0.090325 | low (31.7)             |
| CG11370                                               | expressed in the dorsal trunk primordium                                                                 | down | 0.050380 | no expression<br>(0.7) |
| CG18473                                               | has hydrolase activity and is involved in catabolic processes                                            | up   | 4.08E-05 | no expression<br>(7.1) |
| Pinin                                                 | involved in mRNA splicing                                                                                | down | 7.47E-05 | moderate<br>(123)      |
| CG14715                                               | known to localize to the endomembrane system                                                             | down | 3.49E-05 | moderate<br>(114.5)    |
| CG9813                                                | known to be expressed in the adult head                                                                  | down | 0.046834 | very high<br>(2028.2)  |
| CG9759                                                | no information                                                                                           | down | 0.032216 | no data                |
| Adenosine<br>deaminase-<br>related growth<br>factor C | thought to have adenosine deaminase activity and be involved in<br>the adenosine catabolic process<br>th |      | 0.077174 | low (78.4)             |
| CG14880                                               | has chitin binding activity and involved in chitin metabolism                                            | down | 0.053265 | no expression          |



|                                                         |                                                                                                    |      |          | (1.7)                  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------|------|----------|------------------------|
| CG11951                                                 | thought to have metalloaminopeptidase activity and zinc ion binding activity                       | down | 0.076151 | no expression<br>(.5)  |
| Regulatory<br>particle triple-A<br>ATPase 6-<br>related | predicted to have ATPase and TBP protein binding activity                                          | down | 0.087649 | no expression<br>(5.5) |
| PIP4K                                                   | encodes an enzyme that that is involved in mTOR signaling and cell size control                    | down | 0.041810 | no data                |
| UDP-<br>glycosyltransfer<br>ase family 317<br>member A1 | thought to have UDP-glycosyltransferase activity                                                   |      | 0.098038 | low (53.7)             |
| IncRNA:CR131<br>30                                      | no information                                                                                     |      | 4.11E-14 | moderate<br>(114.6)    |
| Cytochrome<br>P450 309a2                                | predicted to be involved in insect hormone and synthetic hormone metabolism                        | up   | 2.34E-11 | no expression<br>(5.6) |
| Apollo                                                  | involved in protein transport to the nucleus                                                       | up   | 0.001535 | no data                |
| Glutamate<br>receptor IIC                               | encodes a subunit of muscle glutamate receptor                                                     | up   | 2.10E-07 | no expression<br>(6.8) |
| CG30033                                                 | expressed in adult fat bodies                                                                      | down | 0.000393 | no expression<br>(2.3) |
| CG30082                                                 | thought to have serine-type endopeptidase activity                                                 | down | 0.071674 | no expression<br>(3.4) |
| lpk1                                                    | has a role in protein phosphorylation                                                              | up   | 0.004797 | no expression<br>(7.6) |
| Maltase A5                                              | has alpha-glucosidase activity and is involved in metabolizing carbohydrates                       | up   | 0.047306 | moderate<br>(453.6)    |
| CG30472                                                 | no information                                                                                     | up   | 0.004797 | no expression<br>(0.7) |
| CG31643                                                 | thought to have protein kinase activity                                                            | up   | 0.032216 | low (54.5)             |
| CG31664                                                 | no information                                                                                     | up   | 0.008963 | low (9.4)              |
| CG31997                                                 | known to localize to cytosol                                                                       | down | 0.019329 | moderate<br>(290.5)    |
| CG32428                                                 | known to be expressed in the extended germ band embryo                                             | down | 0.027758 | moderate<br>(213.4)    |
| Syndapin                                                | encodes a protein with roles in regulating cellularization,<br>endocytosis and membrane tubulation | down | 0.071674 | moderate<br>(340.8)    |
| p24-related-2                                           | encodes a protein involved in oviposition post-mating                                              | up   | 0.000122 | low (17.9)             |
| Reticulon-like 1                                        | encodes a protein that promotes ER tubule formation                                                | down | 1.87E-10 | very high<br>(1399.7)  |
| Ventrally-<br>expressed<br>protein D                    | encodes a protein that is expressed in the mesoderm and has roles in development                   | ир   | 0.050380 | moderate<br>(181.5)    |



| CG7600                                             | no information                                                                                                                | up   | 9.30E-06 | moderate<br>(218.9)     |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------|----------|-------------------------|
| debra                                              | encodes a transcriptional coactivator                                                                                         | up   | 4.17E-06 | moderate<br>(157.7)     |
| CG34150                                            | expressed in the embryonic midgut, endoderm and midgut primordium                                                             | up   | 0.088378 | low (21.1)              |
| CG34195                                            | thought to be involved in tRNA methylation and has predicted tRNA methyltransferase activity                                  | up   | 1.56E-12 | low (20.3)              |
| CG34423                                            | thought to have ATPase binding and ATPase inhibitor activity                                                                  | up   | 2.30E-07 | no data                 |
| Methenyltetrah<br>ydrofolate<br>synthetase         | though to be involved in tetrahydrofolate interconversion                                                                     | up   | 0.066414 | no expression<br>(12.2) |
| palisade                                           | encodes a protein essential to coordinating assembly during oogenesis                                                         |      | 1.87E-07 | no expression<br>(6.1)  |
| CG42260                                            | encodes a protein that makes up a subunit of a nucleotide-gated ion channel                                                   |      | 2.43E-10 | no data                 |
| spaghetti-<br>squash<br>activator                  | encodes a myosin light chain kinase-like protein that is required for starvation-induced autophagy                            |      | 0.006512 | no data                 |
| flare                                              | encodes a protein that is involved in F-actin disassembly                                                                     |      | 0.002745 | moderate<br>(106.4)     |
| Uncoordinated<br>115b                              | thought to have actin filament binding activity and be involved in lamellipodium assembly                                     | up   | 2.65E-19 | low (17.9)              |
| CG42615                                            | no information                                                                                                                | up   | 0.029931 | no data                 |
| Sterol<br>regulatory<br>element<br>binding protein | encodes a membrane protein that has roles of regulating lipogenesis and activating the transcription of lipogenic genes otein |      | 0.004320 | moderate<br>(314)       |
| CR43086<br>pseudogene                              | no information                                                                                                                | down | 0.084479 | no data                 |
| Nucleoporin<br>160kD                               | encodes a component of the nuclear pore complex and is involved in polyA+ RNA transport                                       | up   | 0.004320 | no data                 |
| Мус                                                | encodes a transcription factor that is involved in cell growth and proliferation                                              | up   | 0.071674 | no data                 |
| antisense<br>RNA:CR43609                           | no information                                                                                                                | up   | 0.042707 | no data                 |
| IncRNA:CR437<br>85                                 | no information                                                                                                                | up   | 0.083834 | no data                 |
| antisense<br>RNA:CR43957                           | no information                                                                                                                | up   | 1.49E-09 | no data                 |
| CR44391<br>pseudogene                              | no information                                                                                                                | up   | 1.95E-08 | no data                 |
| IncRNA:CR445<br>25                                 | no information                                                                                                                |      | 0.050380 | no data                 |



| IncRNA:CR446<br>08 | no information | down | 0.003224 | no data |
|--------------------|----------------|------|----------|---------|
| IncRNA:CR452<br>67 | no information | up   | 0.074123 | no data |

**Table 2.** Description of function of 172 KD//Gal4 DEGs, their direction of regulation, expression pattern in the brain. All gene descriptions were found via FlyBase (FB2021\_03) and expression data was accessed via the FlyAtlas Anatomical Microarray Expression Data (FlyAtlas-RNA.adult, FB2021\_03).



| Category   |                                    | Genes                          | % (involved<br>genes/total<br>genes) | p-value  | Benjamini adj.<br>p-value |
|------------|------------------------------------|--------------------------------|--------------------------------------|----------|---------------------------|
| Biological |                                    | ImpL2, His3.3A, PIP4K, Pnn,    |                                      |          |                           |
| Process    | cell adhesion                      | RhoL, lox2, shg                | 4.10%                                | 7.20E-04 | 3.10E-01                  |
|            |                                    | CG2823, CG5973, Obp56a,        |                                      |          |                           |
|            | transport                          | Obp56h, p24-2, st              | 3.50%                                | 9.60E-03 | 1.00E+00                  |
|            |                                    | Ату-р. CG10383. Rab27.         |                                      |          |                           |
|            | sleep                              | CG5973, Drat, I(2)tid          | 3.50%                                | 1.30E-02 | 1.00E+00                  |
|            | hemocyte migration                 | Ras85D, RhoL, shg              | 1.80%                                | 2.00E-02 | 1.00E+00                  |
|            | insecticide catabolic process      | Cyp6d2, Cyp28d2, Cyp6a2        | 1.80%                                | 2.80E-02 | 1.00E+00                  |
|            | regulation of cell shape           | raw, His3.3A, PIP4K, RhoL, sqa | 2.90%                                | 3.20E-02 | 1.00E+00                  |
|            |                                    | CG14715, CG5554, Csp, Hsp68,   |                                      |          |                           |
|            | protein folding                    | I(2)tid                        | 2.90%                                | 3.50E-02 | 1.00E+00                  |
|            | response to DDT                    | Cyp6d2, Cyp28d2, Cyp6a2        | 1.80%                                | 4.10E-02 | 1.00E+00                  |
|            | cell proliferation                 | Adgf-C, Myc, cutlet, Ras85D    | 2.30%                                | 4.10E-02 | 1.00E+00                  |
|            | positive regulation of cell growth | Myc, PIP4K, Ras85D             | 1.80%                                | 4.30E-02 | 1.00E+00                  |
|            | cellular response to ethanol       | CrzR, Drat                     | 1.20%                                | 4.50E-02 | 1.00E+00                  |
|            | gonad development                  | raw, en, shg                   | 1.80%                                | 4.60E-02 | 1.00E+00                  |
|            | negative regulation of ATPase      |                                |                                      |          |                           |
|            | activity                           | CG34423, CG34424               | 1.20%                                | 5.60E-02 | 1.00E+00                  |
|            | eye pigment precursor transport    | st, w                          | 1.20%                                | 5.60E-02 | 1.00E+00                  |
|            | response to hypoxia                | Drat, Hsp70Bb, Sur             | 1.80%                                | 5.80E-02 | 1.00E+00                  |
|            | border follicle cell migration     | Rab7, Ras85D, RhoL, flr, shg   | 2.90%                                | 6.40E-02 | 1.00E+00                  |



|           | gonad morphogenesis             | raw, shg                        | 1.20% | 6.70E-02 | 1.00E+00 |
|-----------|---------------------------------|---------------------------------|-------|----------|----------|
|           | exosomal secretion              | Rab27, Rab7                     | 1.20% | 6.70E-02 | 1.00E+00 |
|           | regulation of apoptotic process | Myc, Ras85D, I(2)tid            | 1.80% | 7.70E-02 | 1.00E+00 |
|           | gonadal mesoderm                |                                 |       |          |          |
|           | development                     | ftz, shg                        | 1.20% | 8.80E-02 | 1.00E+00 |
|           |                                 | CG14715, Cyp309a2, Cyp6d2,      |       |          |          |
| Cellular  | endoplasmic reticulum           | Cyp28d2, Cyp6a2, Rtnl1, SREBP,  |       |          |          |
| Component | membrane                        | l(2)not, p24-2                  | 5.30% | 5.80E-03 | 4.70E-01 |
|           |                                 | Rab27, CG5397, Rab7, GluRIIC,   |       |          |          |
|           | synapse                         | Jhe, Ibm                        | 3.50% | 8.60E-03 | 4.70E-01 |
|           |                                 | CG11210, CG14340, drongo,       |       |          |          |
|           |                                 | Phm, Ras85D, SREBP, c-cup,      |       |          |          |
|           | membrane                        | lox2, st, w                     | 6.40% | 2.10E-02 | 7.60E-01 |
|           |                                 | CG11951, raw, CG4839, CG5807,   |       |          |          |
|           |                                 | Rab7, Csp, FER, Fas3, PRL-1,    |       |          |          |
|           |                                 | PIP4K, Ras85D, RhoL, Synd,      |       |          |          |
|           | plasma membrane                 | l(3)mbn, st, shg, w             | 9.90% | 3.00E-02 | 8.40E-01 |
|           | nuclear membrane                | CG32165, Fas3, SREBP            | 1.80% | 6.50E-02 | 1.00E+00 |
|           |                                 | Cyp309a2, Cyp6d2, Cyp28d2,      |       |          |          |
|           | organelle membrane              | Cyp6a2                          | 2.30% | 7.30E-02 | 1.00E+00 |
|           |                                 | CG13670, resilin, Cpr47Ef, atk, |       |          |          |
|           | extracellular matrix            | l(3)mbn                         | 2.90% | 9.70E-02 | 1.00E+00 |
|           |                                 |                                 |       |          |          |
|           |                                 | Act87E, Ipk1, cutlet, CG34424,  |       |          |          |
| Molecular |                                 | Uerzoph Acta and Dis Co         |       |          |          |
| Function  | ATP binding                     | Rpt6R, Sur, I(2)tid, st, sqa, w | 9.90% | 2.20E-02 | 1.00E+00 |
|           |                                 |                                 |       |          |          |
|           |                                 | Cyp309a2, Cyp6d2, Cyp28d2,      |       |          |          |
|           | monooxygenase activity          | Cyp6a16, Cyp6a2                 | 2.90% | 2.40E-02 | 1.00E+00 |



| r |                                   |                                |        |          |          |
|---|-----------------------------------|--------------------------------|--------|----------|----------|
|   | beme binding                      | Cyp309a2, Cyp6d2, Cyp28d2,     | 3 50%  | 2 40E-02 | 1 00E+00 |
|   |                                   |                                | 0.0070 | 2.402 02 | 1.002100 |
|   | oxidoreductase activity, acting   |                                |        |          |          |
|   | on paired donors, with            |                                |        |          |          |
|   | incorporation or reduction of     | Cyp309a2, Cyp6d2, Cyp28d2,     |        |          |          |
|   | molecular oxygen                  | Сур6а16, Сур6а2                | 2.90%  | 2.60E-02 | 1.00E+00 |
|   |                                   | Cyp309a2, CG2064, Cyp6d2,      |        |          |          |
|   | oxidoreductase activity           | CG5653, Cyp28d2, Cyp6a2, Drat  | 4.10%  | 3.30E-02 | 1.00E+00 |
|   | ATPase inhibitor activity         | CG34423, CG34424               | 1.20%  | 3.70E-02 | 1.00E+00 |
|   |                                   | CG1136, CG13670 resilin,       |        |          |          |
|   | structural constituent of cuticle | Cpr47Ef, I(3)mbn               | 2.90%  | 5.00E-02 | 1.00E+00 |
|   | pigment binding                   | st, w                          | 1.20%  | 6.00E-02 | 1.00E+00 |
|   | receptor activity                 | CG5397, Fas3, Jhe, shg         | 2.30%  | 6.20E-02 | 1.00E+00 |
|   |                                   | Rab27, Rab7, Pu, Ras85D, RhoL, |        |          |          |
|   | GTP binding                       | Srp54k                         | 3.50%  | 6.70E-02 | 1.00E+00 |
|   |                                   | Rab27, Rab7, Ras85D, RhoL,     |        |          |          |
|   | GTPase activity                   | Srp54k                         | 2.90%  | 8.30E-02 | 1.00E+00 |
|   | ATPase binding                    | CG34423, CG34424               | 1.20%  | 9.50E-02 | 1.00E+00 |
|   | ATPase activity, coupled to       |                                |        |          |          |
|   | transmembrane movement of         |                                |        |          |          |
|   | substances                        | Sur, st, w                     | 1.80%  | 9.90E-02 | 1.00E+00 |

**Table 3.** Summary of the GO terms tagged for each category (biological process, cellular component and molecular function), genes involved in each term, the percentage of total DEGs that the involved genes make up, their p-values and Benjamini adjusted p-values.



| Annotation<br>Cluster 1 | Enrichment Score 1.46                                                | Count | p-value  | Benjamini adj. p-<br>value |
|-------------------------|----------------------------------------------------------------------|-------|----------|----------------------------|
|                         | endoplasmic reticulum membrane                                       | 9     | 5.80E-03 | 4.70E-01                   |
|                         | monooxygenase activity                                               | 5     | 2.40E-02 | 1.00E+00                   |
|                         | heme binding                                                         | 6     | 2.40E-02 | 1.00E+00                   |
|                         | oxidoreductase activity, acting on paired donors, with incorporation |       |          |                            |
|                         | or reduction of molecular oxygen                                     | 5     | 2.60E-02 | 1.00E+00                   |
|                         | insecticide catabolic process                                        | 3     | 2.80E-02 | 1.00E+00                   |
|                         | oxidoreductase activity                                              | 7     | 3.30E-02 | 1.00E+00                   |
|                         | response to DDT                                                      | 3     | 4.10E-02 | 1.00E+00                   |
|                         | organelle membrane                                                   | 4     | 7.30E-02 | 1.00E+00                   |
|                         | oxidation-reduction process                                          | 9     | 1.00E-01 | 1.00E+00                   |
|                         | iron ion binding                                                     | 5     | 1.10E-01 | 1.00E+00                   |
| Annotation<br>Cluster 2 | Enrichment Score 1.15                                                | Count | p-value  | Benjamini adj. p-<br>value |
|                         | border follicle cell migration                                       | 5     | 6.40E-02 | 1.00E+00                   |
|                         | GTP binding                                                          | 6     | 6.70E-02 | 1.00E+00                   |
|                         | GTPase activity                                                      | 5     | 8.30E-02 | 1.00E+00                   |
| Annotation<br>Cluster 3 | Enrichment Score 0.93                                                | Count | p-value  | Benjamini adj. p-<br>value |
|                         | structural constituent of cuticle                                    | 5     | 5.00E-02 | 1.00E+00                   |
|                         | extracellular matrix                                                 | 5     | 9.70E-02 | 1.00E+00                   |
|                         | structural constituent of chitin-based larval cuticle                | 4     | 1.40E-01 | 1.00E+00                   |
|                         | chitin-based cuticle development                                     | 4     | 2.70E-01 | 1.00E+00                   |
| Annotation<br>Cluster 4 | Enrichment Score 0.24                                                | Count | p-value  | Benjamini adj. p-<br>value |
|                         | catalytic step 2 spliceosome                                         | 3     | 4.80E-01 | 1.00E+00                   |
|                         | precatalytic spliceosome                                             | 3     | 5.50E-01 | 1.00E+00                   |
|                         | mRNA splicing, via spliceosome                                       | 3     | 7.40E-01 | 1.00E+00                   |

**Table 4.** Summary of functional annotation clusters, their enrichment scores, number of genes involved, p values and Benjamini adjusted p-values.



An initial goal for our analysis was to determine whether our 172 KD vs Gal4 DEGs were represented or overrepresented within:

- our six candidate genes of interest (*spin*, *unc79*, *Bx*, *CtBP*, *Fas2* or *For*, Chapter 2,
   Table 5)
- the 342 genes bound by Mef2 (Sivachenko et. al 2013)
- known fly alcohol genes and orthologs of worm alcohol genes (Grotewiel & Bettinger 2015)
- fly orthologs of genes nominally associated with SRE (Schmitt et. al 2019)
- human genes associated with externalizing behavior (Danielle Dick, personal communication)

As necessary, we used fly genes or fly orthologs of human and worm genes (defined by DIOPT scores ≥5) for these analyses. We found that eight fly genes overlapped between the 172 DEGs and 342 *Mef2* bound genes (Sivachenko et. al 2013), no fly genes overlapped between the DEGs and our 6 candidate genes (unc79, spin, Bx, CtBP, Fas2, for), two fly genes overlapped between the DEGs and known fly alcohol genes (reviewed by Grotewiel & Bettinger 2015), one fly gene overlapped between the DEGs and fly orthologs of worm alcohol genes (reviewed by Grotewiel & Bettinger 2015), no fly genes overlapped between the DEGs and fly orthologs of SRE-related genes (Schmitt et. al 2019), and nine genes overlapped between the DEGs and fly orthologs of human genes associated with externalizing behavior (Dick, personal communication 2020, Linnér et. al 2020) (Table 5). To determine whether the amount of overlap between the DEGs and each other gene lists was significantly more than expected by chance, we performed Fisher's exact test using a custom R script (generously provided by Mike Miles and Maren Smith, Virginia Commonwealth University, detailed in the Appendix). The number of overlapping genes was not significantly greater than expected by chance for any of the six gene sets (Table 6), suggesting that the 172 DEGs and the other gene sets of interest might be involved in biologically distinct processes. The inclusion of the white gene is of somewhat



suspect biological value given that it is a marker for the Gal4 and RNAi transgenes used in our study, but is included here for completeness.

The lack of overlap between the 342 *Mef2* bound genes and 172 KD//Gal4 DEGs could be due to several reasons. First, if Mef2 regulates the same or similar sets of genes in muscle and neurons, it is possible that the expression of *Mef2* regulated genes in the muscle could mask the effect *Mef2* knockdown on gene expression in neurons. If this is the case, then it is possible this study primarily identified neuron-specific genes downstream of the 342 Mef2 bound genes identified by Sivachenko et. al (Sivachenko et. al 2013). Another possibility is that *Mef2* knockdown during development and into adulthood could have led to gene expression changes that are not represented by the 342 Mef2 bound genes, as these genes are experimentally defined as being Mef2 bound in adulthood. Additionally, because Sivachenko et. al identified genes bound by Mef2 in head muscle. If that is the case, and the genes *Mef2* is bound by or regulates do not substantially overlap with those bound or regulated in neurons, we would not necessarily expect to observe a large overlap between our 172 KD//Gal4 DEGs and the 342 Mef2 bound genes identified by Sivachenko et. al (Sivachenko et. al (Sivachenko et. al 2013).



| DEGs vs. Mef2 bound<br>genes                                                                                                                                                                              | DEGs vs. 6<br>candidate<br>genes | DEGs vs. fly<br>alcohol<br>genes   | DEGs vs. fly<br>orthologs of<br>worm alcohol<br>genes | DEGs vs.<br>fly<br>orthologs<br>of human<br>SRE genes | DEGs vs. fly orthologs of<br>human externalizing factor<br>genes                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>raw</li> <li>white</li> <li>drongo</li> <li>PRL-1 phosphatase</li> <li>lilipod</li> <li>Death resistor Adh<br/>domain containing<br/>target</li> <li>CG9813</li> <li>Reticulon-like 1</li> </ul> | none                             | - white<br>- Corazonin<br>receptor | - Sterol<br>regulatory<br>binding protein             | none                                                  | <ul> <li>Cytochrome P450 6a2</li> <li>FER tyrosine kinase</li> <li>Rab7</li> <li>papi</li> <li>CG11319</li> <li>CG4839</li> <li>Valyl-tRNA synthetase,<br/>mitochondrial</li> <li>Syndapin</li> <li>Sterol regulatory element<br/>binding protein</li> </ul> |

**Table 5.** Summary of each of the genes that overlap between the 172 genes identified asdifferentially expressed between the KD and Gal4 groups and various gene lists of interest.



| Gene Set 1 | Gene Set 2                                              | Genome                | Overlap | Expected | Odds Ratio | p-value |
|------------|---------------------------------------------------------|-----------------------|---------|----------|------------|---------|
| 172 DEGs   | 342 Mef2 bound                                          | Fly<br>(13,968 genes) | 8       | 4.2113   | 1.8286     | 0.0936  |
| 172 DEGs   | 6 candidate<br>genes                                    | Fly<br>(13,968 genes) | 0       | 0.0739   | 0.0        | 1.0     |
| 172 DEGs   | 91 fly alcohol genes                                    | Fly<br>(13,968 genes) | 2       | 1.1206   | 1.7509     | 0.3229  |
| 172 DEGs   | 51 fly orthologs<br>of worm alcohol<br>genes            | Fly<br>(13,968 genes) | 1       | 0.6280   | 1.5667     | 0.4776  |
| 172 DEGs   | 22 fly orthologs<br>of human SRE<br>genes               | Fly<br>(13,968 genes) | 0       | 0.2709   | 0.0        | 1.0     |
| 172 DEGs   | 817 fly orthologs<br>of human<br>externalizing<br>genes | Fly<br>(13,968 genes) | 9       | 10.0604  | 0.8307     | 0.7503  |

**Table 6.** Fisher's exact test data to determine whether the number of overlapping genes between our 172 identified DEGs and each gene list of interest is significant. The amount of overlap between our DEGs and no other gene set is significant.



## 3e. Analysis of KD//Gal4//RNAi DEGs

Our initial analysis indicated that 51 genes were differentially expressed in both the KD vs Gal4 comparison and the KD vs RNAi comparison (Figure 10). We surmised that the most relevant genes would be consistently up-regulated or consistently down-regulated in these two sets of DEGs. Among these 51 DEGs, we therefore identified those genes that were upregulated or down-regulated within both the KD//Gal4 and KD//RNAi. We found 13 genes that were up-regulated in both the KD//Gal4 and KD//RNAi sets (Figure 11A, Table 7), and similarly found 18 genes that were consistently down-regulated in these same two gene sets (Figure 11B, Table 7). Of these 31 genes, 27 have brain expression data available for them (FlyAtlas-RNA.adult, FB2021\_03). Twelve of these 27 genes are moderately, highly or very highly expressed in the brain, with 23 total having detectable expression in this tissue (Table 7), again strongly suggesting that our workflow led to genes with potential roles in nervous system function and behavior. Interestingly, four of the genes in this set of 31 DEGs were also identified as being bound by Mef2 (Sivachenko et. al 2013) which was greater than expected by chance (Tables 8 and 9). Although this set of 31 DEGs did not significantly overlap with the other five gene sets of interest (Table 8), three of the four genes common to the KD//Gal4//RNAi DEGs (raw, PRL-1 phosphatase and CG9813) and the 342 genes bound by Mef2 (Table 9) could be high priority candidates for future studies on the role of genes directly downstream of Mef2 in ethanol sedation. The inclusion of the fourth overlapping gene, white, is of somewhat suspect biological value, given that it is a marker for the Gal4 and RNAi transgenes used in our study, but is included here for completeness.

*PRL-1 phosphatase* has three human orthologs with DIOPT scores  $\geq$  8 each: *PTP4A2*, *PTP4A1* and *PTP4A3* (DIOPT scores are 12, 11, 8, respectively). Neither *PTP-1 phosphatase* nor its orthologs have been implicated in fly or human ethanol responses. *Raw* and *CG9813* do not have any human orthologs.



Ontology analysis of the 31 genes (Table 10) indicates that none of the enriched GO terms are significant based on their Benjamini-Hochberg adjusted p-value. The relatively small size of the gene set (31) and lack of significantly terms limits interpretation of these results.





**Figure 11.** Venn diagrams showing the number genes found to be up or down regulated both in comparison of the knockdown group vs. Gal4 control and the RNAi control. Panel A shows overlap of upregulated genes and panel B shows overlap of downregulated genes.



| Gene                                                 | Function                                                                                                 | Up- or<br>down-<br>regulated | Expressed in neurons?   |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|
| Cytochrome<br>p450 6a2                               | involved in breakdown of synthetic insecticides and insect hormone metabolism                            | up                           | low (47.7)              |
| Fushi tarazu                                         | predicted to play a role in specifying neuronal identity and known to be required in embryogenesis       | up                           | no expression<br>(1.3)  |
| Juvenile<br>hormone<br>esterase                      | involved in ethanol response and catabolism of juvenile hormone                                          | up                           | no expression<br>(3.7)  |
| Bicoid<br>interacting<br>protein 1                   | recruits Sin3A-HDAC1 by interacting with transcription factor                                            | up                           | moderate<br>(172.1)     |
| CG3823                                               | thought to have phosphatidylinositol biphosphate binding activity                                        | up                           | low (7.3)               |
| Arylalkylamine<br>N-<br>acetyltransfera<br>se-like 2 | has acyl-coA-N-acyltransferase and aralkylamine N-<br>acetyltransferase activity                         | up                           | low (42.9)              |
| CG12910                                              | thought to have UDP-galactosyltransferase and N-glycan processing activity                               | up                           | low (43.7)              |
| artichoke                                            | encodes a leucine-rich extracellular matrix protein that<br>contributes to cilium assembly and integrity | up                           | low (31.7)              |
| Cytochrome<br>p450 309a                              | predicted to be involved in insect hormone and synthetic hormone metabolism                              | up                           | no expression<br>(5.6)  |
| Apollo                                               | involved in protein transport to the nucleus                                                             | up                           | no data                 |
| Methenyltetrah<br>ydrofolate<br>synthetase           | though to be involved in tetrahydrofolate interconversion                                                | up                           | no expression<br>(12.2) |
| white                                                | ABC-type guanine transporter involved in transporting cyclic GMP, various amines and pigments            | up                           | low (13)                |
| Heat-shock<br>protein-70Bb                           | encodes a protein involved in heat shock and hypoxia response                                            | up                           | no data                 |
| Pka-C3                                               | encodes a cAMP-dependent protein kinase                                                                  | down                         | moderate<br>(276.9)     |
| Ecdysone-<br>inducible gene<br>L2                    | involved in embryogenesis and normal nervous system development                                          | down                         | moderate<br>(421.7)     |
| raw                                                  | encodes a membrane protein involved in dendritic patterning and                                          | down                         | moderate                |



|                                           | localization of JNK signaling components                                                                                   |      | (292.9)                |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|------------------------|
| shotgun                                   | calcium-dependent cell adhesion protein and has roles in cell sorting, oogenesis and body asymmetry                        | down | no expression<br>(9)   |
| Recombination repair protein 1            | involved in cellular response to oxidative stress via DNA repair mechanisms                                                | down | moderate<br>(107)      |
| Troponin C at<br>41C                      | encodes a protein that binds calcium and regulates muscle contraction                                                      | down | no expression          |
| PRL-1<br>phosphatase                      | encodes a growth inhibitor                                                                                                 | down | high (608.8)           |
| CG4615                                    | predicted to be involved in cytolysis                                                                                      | down | moderate<br>(301.9)    |
| CG1636                                    | known to be expressed in the adult head                                                                                    | down | moderate<br>(165.5)    |
| CG14340                                   | thought to be involved in vesicle-mediated transport                                                                       | down | low (57.1)             |
| CG10257                                   | involved in I-kappaB kinase/NF-kappaB signaling                                                                            | down | moderate<br>(113.2)    |
| CG6805                                    | has phosphatidylinositol-4,5-biphosphate 5-phosphatase activity<br>and be involved in inositol phosphate dephosphorylation | down | moderate<br>(111)      |
| CG4461                                    | involved in heat response                                                                                                  | down | no expression<br>(6)   |
| mitochondrial<br>ribosomal<br>protein S31 | thought to be a structural component of the ribosome and be involved in translation                                        | down | moderate<br>(237.1)    |
| CG9813                                    | known to be expressed in the adult head                                                                                    | down | very high<br>(2028.1)  |
| CG9759                                    | no information                                                                                                             | down | no data                |
| CG30033                                   | expressed in adult fat bodies                                                                                              | down | no expression<br>(2.3) |
| spaghetti-<br>squash<br>activator         | encodes a myosin light chain kinase-like protein that is required for starvation-induced autophagy                         | down | no data                |

**Table 7.** Description of function of 31 DEGs, their direction of regulation, expression pattern in the brain. All gene descriptions were found via FlyBase (FB2021\_03) and expression data was accessed via the FlyAtlas Anatomical Microarray Expression Data (FlyAtlas-RNA.adult, FB2021\_03).


| Gene Set 1 | Gene Set 2                                     | Genome                | Overlap | Expected | Odds Ratio | p-value |
|------------|------------------------------------------------|-----------------------|---------|----------|------------|---------|
| 31 DEGs    | 342 <i>Mef</i> 2 bound                         | Fly<br>(13,968 genes) | 4       | 0.3893   | 5.1263     | 0.0106  |
| 31 DEGs    | 6 candidate<br>genes                           | Fly<br>(13,968 genes) | 0       | 0.0133   | 0.0        | 1.0     |
| 31 DEGs    | 91 fly alcohol                                 | Fly<br>(13,968 genes) | 1       | 0.2020   | 4.9060     | 0.1908  |
| 31 DEGs    | 51 fly orthologs of worm alcohol               | Fly<br>(13,968 genes) | 1       | 0.1132   | 0.0        | 1.0     |
| 31 DEGs    | 22 fly orthologs of human SRE                  | Fly<br>(13,968 genes) | 0       | 0.0488   | 0.0        | 1.0     |
| 31 DEGs    | 817 fly orthologs<br>of human<br>externalizing | Fly<br>(13,968 genes) | 1       | 1.8132   | 0.5180     | 1.0     |

**Table 8.** Fisher's exact test contingency tests to determine whether the number of overlapping genes between our 31 DEGs differentially expressed in the same direction and each gene list of interest is significant. The amount of overlap between our DEGs and 342 *Mef2* bound genes is significant; the amount between our previously identified 6 genes of interest, known fly alcohol genes, fly orthologs of known worm alcohol genes, fly orthologs of previously identified genes implicated in SRE and fly orthologs of human genes involved in externalizing behavior is not.



| DEGs vs. Mef2 bound<br>genes                        | DEGs vs. 6<br>candidate<br>genes | DEGs vs. fly<br>alcohol<br>genes | DEGs vs. fly<br>orthologs of<br>worm alcohol<br>genes | DEGs vs.<br>fly<br>orthologs<br>of human<br>SRE genes | DEGs vs. fly orthologs of<br>human externalizing factor<br>genes |
|-----------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|
| - white<br>- raw<br>- PRL-1 phosphatase<br>- CG9813 | none                             | - white                          | none                                                  | none                                                  | - Cytochrome p450 6a2                                            |

**Table 9.** Summary of each of the genes that overlap between the 31 genes differentially expressed between the KD and Gal4 groups and various gene sets of interest.



| Category   | Term                | Genes             | % (involved<br>genes/total<br>genes) | P-value | Benjamini<br>adj. p value |
|------------|---------------------|-------------------|--------------------------------------|---------|---------------------------|
| Biological |                     |                   |                                      |         |                           |
| Process    | gonad morphogenesis | raw, shg          | 6.5                                  | 1.3E-2  | 1.00E+00                  |
|            | gonadal mesoderm    |                   |                                      |         |                           |
|            | development         | ftz, shg          | 6.5                                  | 1.7E-2  | 1.00E+00                  |
|            | morphogenesis of an |                   |                                      |         |                           |
|            | epithelium          | raw, shg          | 6.5                                  | 5.5E-2  | 1.00E+00                  |
|            | gonad development   | raw, shg          | 6.5                                  | 6.4E-2  | 1.00E+00                  |
|            | germ cell migration | ftz, shg          | 6.5                                  | 8.2E-2  | 1.00E+00                  |
| Cellular   |                     |                   |                                      |         |                           |
| Process    | none                |                   |                                      |         |                           |
| Molecular  |                     | CG34424, Hsp70Bb, |                                      |         |                           |
| Function   | ATP binding         | Pka-C3, sqa, w    | 16.1                                 | 6.2E-2  | 1.00E+00                  |

**Table 10.** Summary of the GO terms tagged for each category (biological process, cellular component and molecular function), genes involved in each term, the percentage of total DEGs that the involved genes make up, their p-values and Benjamini adjusted p-values.



#### 4. Discussion

We performed an RNA-seq study to better understand the role of *Mef2* in ethanol sedation. We confirmed the quality of our RNA samples collected for this project in several ways: by measuring A260/A280 ratios, assessing data from the Agilent Bioanalyzer and interpreting RIN numbers and DV200 data provided by GeneWiz. Additionally, we confirmed that sequencing quality was reliable and accurate via the mean quality scores provided by GeneWiz, that sequencing read depths were comparable across samples, and that the genotypes of the flies collected and the identities of the resulting samples were accurate. We also designed the study to prevent batch effects, and normalized the genetic background of all flies used. We are therefore confident in the overall design of our study and the RNA-seq data derived from it.

We were expecting to see larger-scale differences in gene expression in the KD//Gal4 comparison and clear distinctions between the three genotypes in PCA analyses. The low number of DEGs could potentially indicate that *Mef2* does not regulate many genes; however, given that it is a transcription factor (Black & Olson 1998; Taylor & Hughes 2017), is known to bind 342 genes (Sivachenko et. al 2013) and has a reproducible impact on ethanol sedation patterns (Schmitt et. al 2019, Myers 2020, Chapter 2), we do not think this is likely. A reasonable explanation might be that our experimental design might be masking the true impact of pan-neuronal *Mef2* knockdown. *Mef2* is highly expressed in head muscle (Velasco et. al 2006), so sequencing RNA isolated from fly brains alone might provide increased sensitivity and allow us to capture the full scope of global gene expression changes caused by neuronal knockdown of *Mef2*.

We used our RNA-seq data to address the biological functions of two differentially expressed gene sets (KD//Gal4 and KD//Gal4//RNAi) and to address whether these two sets of differentially expressed genes significantly overlapped with our previously identified candidate genes (Chapter 2), 342 *Mef2* bound genes (Sivachenko et. al 2013), known fly alcohol genes



(Grotewiel & Bettinger 2015), fly orthologs of known worm alcohol genes (Grotewiel & Bettinger 2015), fly orthologs of human genes previously implicated in SRE and fly orthologs of genes implicated in human externalizing behaviors. Although the set of 172 KD//Gal4 DEGs did not significantly overlap with any other gene list of interest, there are still some meaningful conclusions we may be able to draw. For one, approximately 70% of the DEGs were expressed in the brain at some level (FlyAtlas-RNA.adult, FB2021\_03), indicating that our experimental design is able to capture expression changes occurring in the brain. Though the amount of overlap is not significant, the genes that are shared between the KD//Gal4 DEGs and each other set may still be worthwhile candidates to pursue in future studies. GO analysis highlighted a few terms of interest: sleep and ethanol response. Previous studies have shown that Mef2 is required for the daily fasciculation/defasciculation cycle, and that its transcription is regulated by the master circadian rhythm transcription complex (Sivachenko et. al 2013). Mef2's role in ethanol response is a key focus of this thesis, as well as previous literature (Schmitt et. al 2019, Adhikari et. al 2018). The enrichment of these GO terms, which are consistent with Mef2's previously identified functions, could serve as evidence of the validity of our experiment. However, only two genes are associated with the ethanol response GO term: Death resistor Adh domain containing target (Drat) and Corazonin receptor. While this is quite a low number of genes, it is interesting to note that both overlap with other gene lists of interest - Drat is known to bind Mef2, and Corazonin receptor is a known fly alcohol gene. This indicates that these genes could be potential candidate genes for future behavioral studies.

The amount of overlap (four genes) between the 31 KD//Gal4//RNAi genes and the 342 *Mef2* bound genes is significant, and each of the four are expressed in the brain at least some extent, indicating that these genes may also be high priority candidates for future experiments. Additionally, two of the four (*white* and *PRL-1 phosphatase*) have multiple strong orthologs (defined as DIOPT≥5), indicating that studies done on these genes could eventually impact understanding of AUD in humans. *white* is also a known fly alcohol gene. PRL-1 phosphatase



and the other two overlapping DEGs (*raw* and *CG9813*) are not known to be involved in any aspect of ethanol response, experiments pertaining to them could still be meaningful in that they may provide a better understanding of the role of other genes downstream of *Mef2* in ethanol sedation, as well as a better understanding of *Mef2*'s interactions with its downstream genes. In the larger set of 31 KD//Gal4//RNAi genes, *Juvenile hormone esterase* (*Jhe*), is known to be involved in ethanol response and is known to be upregulated in both KD//Gal4 and KD//RNAi comparisons, indicating that it may also be a promising candidate gene.

Future iterations of this experiment might be successful in identifying more DEGs if fly brains were used as the starting material. Additionally, we could perform qPCR of fly heads with a knockdown of *Mef2* to see whether we get the same results in terms of decrease of *Mef2* expression. If we do, this could be further evidence to extract RNA from fly brains in the future. We could also perform qPCR with reagents specifically for the six candidate genes identified in Chapter 2, or the potential new candidate genes laid out in this chapter to understand how knockdown of *Mef2* affects those genes specifically.



#### **CHAPTER 4: DISCUSSION**

GWAS performed by Schmitt et. al (Schmitt et. al 2019) identified human MEF2B as a gene implicated in SRE. *Mef2*, the fly ortholog of MEF2B has been shown to have an impact on ethanol sedation behaviors in *Drosophila* (Schmitt et. al 2019, Myers 2020); flies with panneuronal expression RNAi transgenes against *Mef2* and mutations in the gene display significantly decreased ethanol sedation sensitivity. *Mef2* is a transcription factor (Black & Olson 1998, Taylor & Hughes 2017), and a ChIP-seq was performed to identify any genes bound by *Mef2* (Sivachenko et. al 2013). Additionally, work by other groups has shown that a gene downstream *of Mef2* influences ethanol tolerance and preference (Adhikari et. al 2018) The goal of our first aim of this study was to begin testing the hypothesis that one or more genes of interest downstream of *Mef2* might influence ethanol sedation.

Through a collaboration with Danielle Dick, we determined that 38 human orthologs of the genes bound by Mef2 were associated with human externalizing behavior (Dick 2020, personal communication, Lanier et. al 2020). We found that six of these 38 genes had been implicated in behavioral responses to alcohol in flies and worms (Grotewiel & Bettinger 2015) and confirmed that 1 of them (*spin*) was associated with gene expression changes related to alcohol consumption in humans (Bacanu, personal communication). These six genes (*spin*, *unc79*, *Bx*, *CtBP*, *Fas2* and *for*) became our high priority candidate genes for analysis in Chapter 2. Using available RNAi reagents, these genes were tested to determine whether RNAi-mediated knockdown of any of the genes influenced ethanol sedation.

Pan-neuronal expression of RNAi targeting two genes, *spin* and *unc79*, produced consistent changes in ethanol sedation. Expression of all viable RNAi transgenes targeting these genes decreased ethanol sedation sensitivity. Expression of RNAi targeting other candidate genes either did not produce an effect on ethanol sedation or did not produce a consistent effect when multiple RNAi transgenes against one gene were tested. This could be



due to the genes potentially not functioning in neurons, or the specific RNAi transgenes not adequately knocking down the target gene. To address this, future iterations of this study could focus on manipulating the candidate genes via mutations rather than RNAi transgenes. Additionally, assessing the impact of overexpression or expression of dominant negatives could also provide insight into the potential role each candidate gene plays in ethanol sedation. Several of the RNAi reagents we tested were lethal. Expressing these genes only in adulthood or only in specific neurons to bypass lethality might also aid in better understanding of the role these genes play in ethanol sedation.

The second component of this project was an RNA-seq to identify the genes regulated by *Mef2*. We isolated RNA from fly heads of three genotypes, the *elav*-GAL4/+;v15550/+ knockdown genotype (KD), an *elav*-Gal4/+ control (Gal4) and a v15550/+ control (RNAi) and sent them for sequencing. We established confidence in the RNA quality, sequencing quality and that there was no disordering of samples.

In total, we identified 172 DEGs in the KD//Gal4 comparison, 1,063 DEGs in the KD//RNAi comparison and 2,238 DEGs in the Gal4//RNAi comparison. Though we do not understand and were not expecting to observe such large expression differences between our two controls, we know that the differences do not stem from differences in genetic background, mix-up of RNA samples, sample or sequence quality or batch effects, due to our experimental design. As the two controls consistently do not show behavioral differences in sedation experiments, we focused the first part of our analyses on the 172 KD//Gal4 DEGs.

We found that 70% of these DEGs were expressed in the fly brain to some extent, indicating that our experiment was able to identify gene expression changes at the neuronal level. Gene ontology terms representing an expansive spectrum of biological, cellular and molecular processes were found to be enriched, indicating that these DEGs may have a far-reaching scope. Specific GO terms such as sleep and ethanol response were also enriched – these terms are consistent with previously identified functions of *Mef2* (Sivachenko et. al 2013;



Schmitt et. al 2019; Adhikari et. al 2018), further highlighting the validity of our experiment. We conducted overlap analyses to understand whether genes differentially expressed between the KD and Gal4 groups overlapped significantly with other gene lists of interest: our six candidate genes (Chapter 2), known Mef2 bound genes (Sivachenko et. al 2013), known fly alcohol genes and fly orthologs of known worm alcohol genes (reviewed in Grotewiel & Bettinger 2015), fly orthologs of human SRE genes (Schmitt et. al 2019) and fly orthologs of human externalizing factor genes (Dick, personal communication; Linnér et. al 2020). While we did not find that overlap between the DEGs and any other list of interest was significant, the two genes associated with the ethanol response GO term (*Drat* and *corazonin receptor*) are known to be Mef2 bound, and a known fly alcohol gene, respectively, and may be promising candidates for future experiments.

54 genes were shown to be differentially expressed between both the KD//Gal4 and KD//RNAi comparisons. We found that 31 of these genes were regulated in the same direction (18 are downregulated in both comparisons, and 13 are upregulated in both comparisons). 76.7% of these genes (23 out of 31) are expressed in the brain at some level, again demonstrating that our experimental design is able to identify gene expression changes in neurons and identify genes with neuronal roles. Interpretation of GO results is limited by the small number of DEGs; however, these genes may be involved in regulating development and GTP-dependent processes. Overlap analysis showed that a significant number of genes (*PTP-1 phosphatase*, *raw*, *white* and *CG9813*) are shared between the 31 DEGs and known Mef2 bound genes. *PTP-1 phosphatase* and *white* both have three strong human orthologs (DIOPT  $\geq$  5) each, and while neither they nor their human orthologs have known function in ethanol behaviors or response, they may be promising candidate genes. Additionally, while *raw* and *CG9813* do not have human orthologs, studying them further may still provide insight into *Mef2*'s regulation of its downstream genes and the role of *Mef2* regulated genes in ethanol sedation.



Overall, the results from the RNA-seq were not what we expected. There could be several explanations for this, (i) that Mef2 doesn't actually regulate many genes. However, this is unlikely, due to the multiple studies that have implicated *Mef2* as a transcription factor (Black & Olson 1998, Taylor & Hughes 2017), the large number of genes that *Mef2* is known to bind to (Sivachenko et. al 2013) and the behavioral differences that we observe in ethanol sedation when the gene is knocked down. Another possible reason is batch effects, though this is also not likely as we took great care to collect flies, separate fly heads and perform RNA preps in a rotating manner and representatives from GeneWiz confirmed that the possibility of large-scale batch effects was highly unlikely from their end as well. Therefore, a more viable explanation may be that our starting material for the RNA-seq was not optimal. Mef2 is expressed in neurons (Schmitt et. al 2019, Crittenden et. al 2018), but it is also expressed in head muscle (Valasco et. al 2006). Our knockdown of *Mef2* was pan-neuronal, not in the entire fly head. Therefore, in the future, sequencing RNA from fly brains might provide increased sensitivity to capture changes resulting from gene expression changes Mef2 in future repetitions of this project. Targeting qPCR can also be done to understand individual relationships between Mef2 and its downstream genes.

Overall, these types of experiments can provide a better understanding of the molecular mechanisms underlying AUD in humans, especially if implicated genes have orthologs in other model organisms or humans, as they could then be studied across species to get a better sense of their potentially conserved role in ethanol behaviors. *Drosophila* are powerful tools to study alcohol use, as their behavioral responses to ethanol, including locomotor and sedation behaviors, withdrawal and tolerance are quite conserved to human responses to alcohol (Grotewiel & Bettinger 2015). Therefore, identifying genes that are relevant to ethanol behaviors in fruit flies could be a springboard to examine the impact of those genes in human systems.



#### References

- Adhikari, P., Orozco, D., & Wolf, F. W. (2017). *Mef2 induction of the immediate early gene Hr38/Nr4a is terminated by Sirt1 to promote ethanol tolerance*. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/205666
- Adkins, A., Hack, L., Bigdeli, T., Williamson, V., McMichael, G., Mamdani, M., Edwards, A.,
  Aliev, F., Chan, R., Bhandari, P., Raabe, R., Alaimo, J., Blackwell, G., Moscati, A.,
  Poland, R., Rood, B., Patterson, D., Walsh, D., Whitfield, J., . . . Montgomery, G. (2017).
  Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering
  Ethanol Response Behaviors in Model Organisms. *Alcoholism: Clinical and Experimental Research*. Published. https://doi.org/10.1111/acer.13362
- Alcohol use disorder: A comparison between DSM–IV and DSM–5. (n.d.). Retrieved July 30, 2021, from https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/alcohol-use-disorder-comparison-between-dsm
- Aliev, F., Wetherill, L., Bierut, L., Bucholz, K. K., Edenberg, H., Foroud, T., & Dick, D. M. (2015).
   Genes associated with alcohol outcomes show enrichment of effects with broad externalizing and impulsivity phenotypes in an independent sample. *Journal of Studies* on Alcohol and Drugs, 76(1), 38–46. https://doi.org/10.15288/jsad.2015.76.38
- Babor, T., Holder, H., Caetano, R., Homel, R., Casswell, S., Livingston, M., Edwards, G.,
  Österberg, E., Giesbrecht, N., Rehm, J., Graham, K., Room, R., Grube, J., Rossow, I., &
  Hill, L. (2010). Alcohol: No ordinary commodity. In *Alcohol: No Ordinary Commodity* (pp. 11–22). Oxford University Press.

http://dx.doi.org/10.1093/acprof:oso/9780199551149.003.002

Bagnardi, V., Rota, M., Botteri, E., Tramacere, I., Islami, F., Fedirko, V., Scotti, L., Jenab, M.,
Turati, F., Pasquali, E., Pelucchi, C., Galeone, C., Bellocco, R., Negri, E., Corrao, G.,
Boffetta, P., & La Vecchia, C. (2014). Alcohol consumption and site-specific cancer risk:



A comprehensive dose–response meta-analysis. *British Journal of Cancer*, *112*(3), 580– 593. https://doi.org/10.1038/bjc.2014.579

- Barr, P. B., & Dick, D. M. (2019). The genetics of externalizing problems. In *Recent Advances in Research on Impulsivity and Impulsive Behaviors* (pp. 93–112). Springer International Publishing. http://dx.doi.org/10.1007/7854\_2019\_120
- Barr, P. B., Salvatore, J. E., Wetherill, L., Anokhin, A., Chan, G., Edenberg, H. J., Kuperman, S., Meyers, J., Nurnberger, J., Porjesz, B., Schuckit, M., & Dick, D. M. (2020). A family-based genome wide association study of externalizing behaviors. *Behavior Genetics*, *50*(3), 175–183. https://doi.org/10.1007/s10519-020-09999-3
- Berger, K. H., Heberlein, U., & Moore, M. S. (2004). Rapid and chronic: Two distinct forms of ethanol tolerance in drosophila. *Alcoholism: Clinical & Experimental Research*, 28(10), 1469–1480. https://doi.org/10.1097/01.alc.0000141817.15993.98
- Bettinger, J. C., Leung, K., Bolling, M. H., Goldsmith, A. D., & Davies, A. G. (2012). Lipid
  Environment Modulates the Development of Acute Tolerance to Ethanol in
  Caenorhabditis elegans. *PLoS ONE*, *7*(5), e35192.
  https://doi.org/10.1371/journal.pone.0035192
- Black, B. L., & Olson, E. N. (1998). TRANSCRIPTIONAL CONTROL OF MUSCLE DEVELOPMENT BY MYOCYTE ENHANCER FACTOR-2 (MEF2) PROTEINS. Annual Review of Cell and Developmental Biology, 14(1), 167–196. https://doi.org/10.1146/annurev.cellbio.14.1.167
- Briasoulis, A., Agarwal, V., & Messerli, F. H. (2012). Alcohol consumption and the risk of hypertension in men and women: A systematic review and meta-analysis. *The Journal of Clinical Hypertension*, *14*(11), 792–798. https://doi.org/10.1111/jch.12008
- Cao, Y., Willett, W. C., Rimm, E. B., Stampfer, M. J., & Giovannucci, E. L. (2015). Light to moderate intake of alcohol, drinking patterns, and risk of cancer: Results from two prospective US cohort studies. *BMJ*, h4238. https://doi.org/10.1136/bmj.h4238



- Caygill, E. E., & Brand, A. H. (2016). The GAL4 system: A versatile system for the manipulation and analysis of gene expression. In *Methods in Molecular Biology* (pp. 33–52). Springer New York. http://dx.doi.org/10.1007/978-1-4939-6371-3\_2
- Cederbaum, A. I. (2020). Alcohol metabolism. In *Encyclopedia of Gastroenterology* (pp. 47–55). Elsevier. http://dx.doi.org/10.1016/b978-0-12-801238-3.65618-0
- Chan, R. F., Lewellyn, L., DeLoyht, J. M., Sennett, K., Coffman, S., Hewitt, M., Bettinger, J. C., Warrick, J. M., & Grotewiel, M. (2014). Contrasting Influences of Drosophila white/miniwhiteon Ethanol Sensitivity in Two Different Behavioral Assays. *Alcoholism: Clinical and Experimental Research*, *38*(6), 1582–1593. https://doi.org/10.1111/acer.12421
- Chatterjee, A., Aavula, K., & Nongthomba, U. (2019). Beadex, a homologue of the vertebrate LIM domain only protein, is a novel regulator of crystal cell development in Drosophila melanogaster. *Journal of Genetics*, *98*(5). https://doi.org/10.1007/s12041-019-1154-6
- Correction for Schumann et al., Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. (2011). *Proceedings of the National Academy of Sciences*, *108*(22), 9316–9316. https://doi.org/10.1073/pnas.1106917108
- Cowmeadow, Roshani. B., Krishnan, Harish. R., Ghezzi, A., Al'Hasan, Y. M., Wang, Yan. Z., & Atkinson, N. S. (2006). Ethanol Tolerance Caused by slowpoke Induction in Drosophila. *Alcoholism: Clinical and Experimental Research*, *30*(5), 745–753. https://doi.org/10.1111/j.1530-0277.2006.00087.x
- Crittenden, J. R., Skoulakis, E. M. C., Goldstein, Elliott. S., & Davis, R. L. (2018). *Drosophila mef2 is essential for normal mushroom body and wing development*. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/311845
- DAVID functional annotation bioinformatics microarray analysis. (n.d.). Retrieved July 30, 2021, from https://david.ncifcrf.gov/



- de Velasco, B., Mandal, L., Mkrtchyan, M., & Hartenstein, V. (2005). Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster. *Development Genes and Evolution*, *216*(1), 39–51. https://doi.org/10.1007/s00427-005-0029-4
- Devineni, A. V., & Heberlein, U. (2009). Preferential ethanol consumption in drosophila models features of addiction. *Current Biology*, *19*(24), 2126–2132. https://doi.org/10.1016/j.cub.2009.10.070
- Dick, D. M., & Foroud, T. (2003). Candidate genes for alcohol dependence: A review of genetic evidence from human studies. *Alcoholism: Clinical & Experimental Research*, 27(5), 868–879. https://doi.org/10.1097/01.alc.0000065436.24221.63
- Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman, K., & Dickson, B. J. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. *Nature*, 448(7150), 151–156. https://doi.org/10.1038/nature05954
- DRSC DRSC integrative ortholog prediction tool. (n.d.). Retrieved July 30, 2021, from https://www.flyrnai.org/cgi-bin/DRSC\_orthologs.pl
- Ducci, F., & Goldman, D. (2008a). Genetic approaches to addiction: Genes and alcohol. *Addiction*, *103*(9), 1414–1428. https://doi.org/10.1111/j.1360-0443.2008.02203.x
- Ducci, F., & Goldman, D. (2008b). Genetic approaches to addiction: Genes and alcohol. *Addiction*, *103*(9), 1414–1428. https://doi.org/10.1111/j.1360-0443.2008.02203.x
- Duffy, J. B. (2002). GAL4 system indrosophila: A fly geneticist's swiss army knife. *Genesis*, 34(1–2), 1–15. https://doi.org/10.1002/gene.10150
- Edenberg, H. J., & Foroud, T. (2013). Genetics and alcoholism. *Nature Reviews Gastroenterology & Hepatology*, *10*(8), 487–494. https://doi.org/10.1038/nrgastro.2013.86



- Edenberg, H. J., & McClintick, J. N. (2018). Alcohol dehydrogenases, aldehyde dehydrogenases, and alcohol use disorders: A critical review. *Alcoholism: Clinical and Experimental Research*, *42*(12), 2281–2297. https://doi.org/10.1111/acer.13904
- Engel, G. L., Taber, K., Vinton, E., & Crocker, A. J. (2019). Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data.' *Behavioral and Brain Functions*, *15*(1). https://doi.org/10.1186/s12993-019-0159-x
- Fang, M., Li, J., Blauwkamp, T., Bhambhani, C., Campbell, N., & Cadigan, K. M. (2006). Cterminal-binding protein directly activates and represses Wnt transcriptional targets in Drosophila. *The EMBO Journal*, *25*(12), 2735–2745. https://doi.org/10.1038/sj.emboj.7601153
- Gao, B., & Bataller, R. (2011). Alcoholic liver disease: Pathogenesis and new therapeutic targets. *Gastroenterology*, 141(5), 1572–1585. https://doi.org/10.1053/j.gastro.2011.09.002
- Ge, S. X., Son, E. W., & Yao, R. (2018). iDEP: An integrated web application for differential expression and pathway analysis of RNA-Seq data. *BMC Bioinformatics*, *19*(1). https://doi.org/10.1186/s12859-018-2486-6
- Ghezzi, A., Krishnan, H. R., & Atkinson, N. S. (2012). Susceptibility to ethanol withdrawal seizures is produced by BK channel gene expression. *Addiction Biology*, *19*(3), 332– 337. https://doi.org/10.1111/j.1369-1600.2012.00465.x
- Goldman, D., Oroszi, G., & Ducci, F. (2006). The Genetics of addictions: Uncovering the genes. *FOCUS*, *4*(3), 401–415. https://doi.org/10.1176/foc.4.3.401

Grotewiel, M., & Bettinger, J. C. (2015). DrosophilaandCaenorhabditis elegansas Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. *Alcoholism: Clinical and Experimental Research*, *39*(8), 1292–1311. https://doi.org/10.1111/acer.12785

Heigwer, F., Port, F., & Boutros, M. (2018). RNA interference (rnai) screening in drosophila. *Genetics*, *208*(3), 853–874. https://doi.org/10.1534/genetics.117.300077



- Hitzemann, R., Bottomly, D., Darakjian, P., Walter, N., Iancu, O., Searles, R., Wilmot, B., &
  McWeeney, S. (2012). Genes, behavior and next-generation RNA sequencing. *Genes, Brain and Behavior*, *12*(1), 1–12. https://doi.org/10.1111/gbb.12007
- Hoang, C. Q., Burnett, M. E., & Curtiss, J. (2010). Drosophila CtBP regulates proliferation and differentiation of eye precursors and complexes with Eyeless, Dachshund, Dan, and Danr during eye and antennal development. *Developmental Dynamics*, 239(9), 2367–2385. https://doi.org/10.1002/dvdy.22380
- Hu, Y., Flockhart, I., Vinayagam, A., Bergwitz, C., Berger, B., Perrimon, N., & Mohr, S. E.
  (2011). An integrative approach to ortholog prediction for disease-focused and other functional studies. *BMC Bioinformatics*, *12*(1), 357. https://doi.org/10.1186/1471-2105-12-357
- iDEP.92. (n.d.). Retrieved July 30, 2021, from http://bioinformatics.sdstate.edu/idep/
- Joiner, W. J., Friedman, E. B., Hung, H.-T., Koh, K., Sowcik, M., Sehgal, A., & Kelz, M. B. (2013). Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness. *PLoS Genetics*, *9*(9), e1003605. https://doi.org/10.1371/journal.pgen.1003605
- Kairamkonda, S., & Nongthomba, U. (2018). Beadex , a Drosophila LIM domain only protein, function in follicle cells is essential for egg development and fertility. *Experimental Cell Research*, 367(1), 97–103. https://doi.org/10.1016/j.yexcr.2018.03.029
- Kaun, K. R., Azanchi, R., Maung, Z., Hirsh, J., & Heberlein, U. (2011). A Drosophila model for alcohol reward. *Nature Neuroscience*, *14*(5), 612–619. https://doi.org/10.1038/nn.2805

Kendler, K. S. (1992). A population-based twin study of alcoholism in women. JAMA: The Journal of the American Medical Association, 268(14), 1877. https://doi.org/10.1001/jama.1992.03490140085040

Kent, C. F., Daskalchuk, T., Cook, L., Sokolowski, M. B., & Greenspan, R. J. (2009). The Drosophila foraging Gene Mediates Adult Plasticity and Gene–Environment Interactions



in Behaviour, Metabolites, and Gene Expression in Response to Food Deprivation. *PLoS Genetics*, *5*(8), e1000609. https://doi.org/10.1371/journal.pgen.1000609

- Kim, J.-S., Park, K.-S., Park, O., Kim, S. H., & Jeon, S.-H. (2017). Novel phenotypes of Drosophila spinster locus on the head formation during embryogenesis. *Genes & Genomics*, *39*(2), 237–242. https://doi.org/10.1007/s13258-016-0513-4
- Kranzler, H. R., & Soyka, M. (2018). Diagnosis and pharmacotherapy of alcohol use disorder. *JAMA*, *320*(8), 815. https://doi.org/10.1001/jama.2018.11406
- Krishnan, H. R., Li, X., Ghezzi, A., & Atkinson, N. S. (2016). A DNA element in the slo gene modulates ethanol tolerance. *Alcohol*, *51*, 37–42. https://doi.org/10.1016/j.alcohol.2015.12.003
- Kuntz, S., Poeck, B., Sokolowski, M. B., & Strauss, R. (2012). The visual orientation memory of Drosophila requires Foraging (PKG) upstream of Ignorant (RSK2) in ring neurons of the central complex. *Learning & Memory*, *19*(8), 337–340. https://doi.org/10.1101/lm.026369.112
- Lasek, A. W., Giorgetti, F., Berger, K. H., Tayor, S., & Heberlein, U. (2011). Lmo Genes Regulate Behavioral Responses to Ethanol in Drosophila melanogaster and the Mouse. *Alcoholism: Clinical and Experimental Research*, no-no. <u>https://doi.org/10.1111/j.1530-0277.2011.01506.x</u>
- Larkin A, Marygold SJ, Antonazzo G, Attrill H, dos Santos G, Garapati PV, Goodman JL, Gramates LS, Millburn G, Strelets VB, Tabone CJ, Thurmond J and the FlyBase Consortium (2021) FlyBase: updates to the Drosophila melanogaster knowledge base. <u>Nucleic Acids Res. 49(D1) D899–D907</u>
- Lear, B. C., Darrah, E. J., Aldrich, B. T., Gebre, S., Scott, R. L., Nash, H. A., & Allada, R. (2013). UNC79 and UNC80, putative auxiliary subunits of the NARROW ABDOMEN ion channel, are indispensable for robust circadian locomotor rhythms in drosophila. *PLoS ONE*, *8*(11), e78147. https://doi.org/10.1371/journal.pone.0078147



- Lee, K. M., Talikoti, A., Shelton, K., & Grotewiel, M. (2021). Tyramine synthesis, vesicular packaging, and the SNARE complex function coordinately in astrocytes to regulate Drosophila alcohol sedation. *Addiction Biology*, *26*(4). <u>https://doi.org/10.1111/adb.13019</u>
- Karlsson Linnér, R., Mallard, T.T., Barr, P.B., Sanchez-Roige, S., Madole, J.W., Driver, M.N.,
  Poore, H.E., de Vlaming, R., Grotzinger, A.D., Tielbeek, J.J., Johnson, E.C., Liu, M.,
  Rosenthal, S.B., Ideker, T., Zhou, H., Kember, R.L., Pasman, J.A., Verweij, K.J.H., Liu,
  D.J., Vrieze, S., COGA Collaborators, Kranzler, H.R., Gelernter, J., Harris, K.M., TuckerDrob, E.M., Waldman, I.D., Palmer, A.A., Harden, K.P., Koellinger, P.D., & Dick, D.M. (in
  press). Multivariate analysis of 1.5 million people identifies genetic associations with
  traits related to self-regulation and addiction. *Nature Neuroscience*.
- Lipner, E. M., & Greenberg, D. A. (2018). The rise and fall and rise of linkage analysis as a technique for finding and characterizing inherited influences on disease expression. In *Methods in Molecular Biology* (pp. 381–397). Springer New York. http://dx.doi.org/10.1007/978-1-4939-7471-9\_21
- Mao, Y., & Freeman, M. (2009). Fasciclin 2, the Drosophila orthologue of neural cell-adhesion molecule, inhibits EGF receptor signalling. *Development*, *136*(3), 473–481. https://doi.org/10.1242/dev.026054
- Mathies, L. D., Lindsay, J. H., Handal, A. P., Blackwell, G. G., Davies, A. G., & Bettinger, J. C. (2020). SWI/SNF complexes act through CBP-1 histone acetyltransferase to regulate acute functional tolerance to alcohol. *BMC Genomics*, *21*(1).

https://doi.org/10.1186/s12864-020-07059-y

- Melemis, S. (2015). Relapse Prevention and the Five Rules of Recovery. *Yale Journal of Biology and Medicine*. Published.
- Milan, M., Diaz-Benjumea, F. J., & Cohen, S. M. (1998). Beadex encodes an LMO protein that regulates Apterous LIM-homeodomain activity in Drosophila wing development: A model



for LMO oncogene function. *Genes & Development*, *12*(18), 2912–2920. https://doi.org/10.1101/gad.12.18.2912

- Morozova, T. V., Huang, W., Pray, V. A., Whitham, T., Anholt, R. R. H., & Mackay, T. F. C. (2015). Polymorphisms in early neurodevelopmental genes affect natural variation in alcohol sensitivity in adult drosophila. *BMC Genomics*, *16*(1). https://doi.org/10.1186/s12864-015-2064-5
- Neuert, H., Deing, P., Krukkert, K., Naffin, E., Steffes, G., Risse, B., Silies, M., & Klämbt, C.
   (2019). The Drosophila NCAM homolog Fas2 signals independent of adhesion.
   *Development*. https://doi.org/10.1242/dev.181479
- Nitta, Y., Matsui, S., Kato, Y., Kaga, Y., Sugimoto, K., & Sugie, A. (2019). Analysing the evolutional and functional differentiation of four types of Daphnia magna cryptochrome in Drosophila circadian clock. *Scientific Reports*, 9(1). <u>https://doi.org/10.1038/s41598-019-45410-w</u>
- Ojelade, S., Jia, T., Rodan, A., Chenyang, T., Kadrmas, J., Cattrell, A., Ruggeri, B., Charoen,
  P., Lemaitre, H., Banaschewski, T., Buchel, C., Bokde, A., Carvalho, R., Conrod, P., &
  Flor, H. (2015). Rsu1 regulates ethanol consumption in Drosophila and humans. *Proceedings of the National Academy of Sciences of the United States of America*.
  Published. https://doi.org/10.1073/pnas.1417222112
- Osterwalder, T., Yoon, K. S., White, B. H., & Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. *Proceedings of the National Academy of Sciences*, *98*(22), 12596–12601. https://doi.org/10.1073/pnas.221303298
- Ott, J., Wang, J., & Leal, S. M. (2015). Genetic linkage analysis in the age of whole-genome sequencing. *Nature Reviews Genetics*, *16*(5), 275–284. https://doi.org/10.1038/nrg3908
- Picchio, L., Plantie, E., Renaud, Y., Poovthumkadavil, P., & Jagla, K. (2013). Novel Drosophila model of myotonic dystrophy type 1: Phenotypic characterization and genome-wide view



of altered gene expression. *Human Molecular Genetics*, *22*(14), 2795–2810. https://doi.org/10.1093/hmg/ddt127

- Pon, J. R., & Marra, M. A. (2015). MEF2 transcription factors: Developmental regulators and emerging cancer genes. *Oncotarget*, 7(3), 2297–2312. https://doi.org/10.18632/oncotarget.6223
- Poortinga, G., Watanabe, M., & Parkhurst, S. M. (1998). Drosophila CtBP: A Hairy-interacting protein required for embryonic segmentation and Hairy-mediated transcriptional repression. *The EMBO Journal*, *17*(7), 2067–2078. https://doi.org/10.1093/emboj/17.7.2067
- Potthoff, M. J., & Olson, E. N. (2007). MEF2: A central regulator of diverse developmental programs. *Development*, *134*(23), 4131–4140. https://doi.org/10.1242/dev.008367
- Ray, L. A., Hart, E. J., & Chin, P. F. (2011). Self-Rating of the Effects of Alcohol (SRE):
   Predictive utility and reliability across interview and self-report administrations. *Addictive Behaviors*, *36*(3), 241–243. https://doi.org/10.1016/j.addbeh.2010.10.009
- Ren, J., Zhu, H., Chi, C., Mehrmohamadi, M., Deng, K., Wu, X., & Xu, T. (2014). Beadex affects gastric emptying in Drosophila. *Cell Research*, 24(5), 636–639. https://doi.org/10.1038/cr.2014.24
- Robinson, B. G., Khurana, S., & Atkinson, N. S. (2013). Drosophilalarvae as a model to study physiological alcohol dependence. *Communicative & Integrative Biology*, *6*(2), e23501. https://doi.org/10.4161/cib.23501

Sanchez-Roige, S., Fontanillas, P., Elson, S. L., Gray, J. C., de Wit, H., Davis, L. K., MacKillop, J., & Palmer, A. A. (2017). Genome-wide association study of alcohol use disorder identification test (AUDIT) scores in 20 328 research participants of European ancestry. *Addiction Biology*, *24*(1), 121–131. https://doi.org/10.1111/adb.12574

Sanchez-Roige, S., Palmer, A. A., Fontanillas, P., Elson, S. L., Adams, M. J., Howard, D. M., Edenberg, H. J., Davies, G., Crist, R. C., Deary, I. J., McIntosh, A. M., & Clarke, T.-K.



(2019). Genome-Wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. *American Journal of Psychiatry*, *176*(2), 107–118. https://doi.org/10.1176/appi.ajp.2018.18040369

- Sandhu, S., Kollah, A. P., Lewellyn, L., Chan, R. F., & Grotewiel, M. (2015). An inexpensive, scalable behavioral assay for measuring ethanol sedation sensitivity and rapid tolerance in drosophila. *Journal of Visualized Experiments*, *98*. https://doi.org/10.3791/52676
- Sass, T. N., MacPherson, R. A., Mackay, T. F. C., & Anholt, R. R. H. (2020). High-Throughput Method for Measuring Alcohol Sedation Time of Individual Drosophila melanogaster. *Journal of Visualized Experiments*, *158*. https://doi.org/10.3791/61108
- Schmitt, R. E., Shell, B. C., Lee, K. M., Shelton, K. L., Mathies, L. D., Edwards, A. C., &
  Grotewiel, M. (2019). Convergent Evidence From Humans and Drosophila melanogaster
  Implicates the Transcription Factor MEF2B/Mef2 in Alcohol Sensitivity. *Alcoholism: Clinical and Experimental Research*, *43*(9), 1872–1886.
  https://doi.org/10.1111/acer.14138
- Schuckit, M. A. (1994). Low level of response to alcohol as a predictor of future alcoholism. *American Journal of Psychiatry*, *151*(2), 184–189. https://doi.org/10.1176/ajp.151.2.184
- Schuckit, M. A., Tipp, J. E., Smith, T. L., Wiesbeck, G. A., & Kalmijn, J. (1997). Self-Rating of the effects of alcohol. *PsycTESTS Dataset*. https://doi.org/10.1037/t04178-000
- Section 5 PE tables results from the 2019 national survey on drug use and health: Detailed tables, SAMHSA, CBHSQ. (n.d.). Retrieved July 29, 2021, from https://www.samhsa.gov/data/sites/default/files/reports/rpt29394/NSDUHDetailedTabs20 19/NSDUHDetTabsSect5pe2019.htm?s=5.4&#tab5-4a
- Shiraiwa, T., & Carlson, J. R. (2007a). Proboscis extension response (PER) assay in drosophila. *Journal of Visualized Experiments*, 3. https://doi.org/10.3791/193
- Shiraiwa, T., & Carlson, J. R. (2007b). Proboscis extension response (PER) assay in drosophila. *Journal of Visualized Experiments*, 3. https://doi.org/10.3791/193



- Sivachenko, A., Li, Y., Abruzzi, K. C., & Rosbash, M. (2013). The transcription factor mef2 links the drosophila core clock to fas2, neuronal morphology, and circadian behavior. *Neuron*, *79*(2), 281–292. https://doi.org/10.1016/j.neuron.2013.05.015
- Southall, T. D., Elliott, D. A., & Brand, A. H. (2008). The GAL4 System: A versatile toolkit for gene expression in drosophila. *Cold Spring Harbor Protocols*, *2008*(8), pdb.top49-pdb.top49. https://doi.org/10.1101/pdb.top49
- Speca, D. J., Chihara, D., Ashique, A. M., Bowers, M. S., Pierce-Shimomura, J. T., Lee, J.,
  Rabbee, N., Speed, T. P., Gularte, R. J., Chitwood, J., Medrano, J. F., Liao, M., Sonner,
  J. M., Eger, E. I., Peterson, A. S., & McIntire, S. L. (2010). Conserved Role of unc-79 in
  Ethanol Responses in Lightweight Mutant Mice. *PLoS Genetics*, *6*(8), e1001057.
  https://doi.org/10.1371/journal.pgen.1001057
- Sweeney, S. T., & Davis, G. W. (2002). Unrestricted Synaptic Growth in spinster—a Late Endosomal Protein Implicated in TGF-β-Mediated Synaptic Growth Regulation. *Neuron*, *36*(3), 403–416. https://doi.org/10.1016/s0896-6273(02)01014-0
- Taylor, M. V., & Hughes, S. M. (2017). Mef2 and the skeletal muscle differentiation program. Seminars in Cell & Developmental Biology, 72, 33–44. https://doi.org/10.1016/j.semcdb.2017.11.020
- Understanding Alcohol Use Disorder. (n.d.). Retrieved July 29, 2021, from https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/understandingalcohol-use-disorder
- VDRC Stock Center: Main page. (n.d.). Retrieved July 30, 2021, from http://stockcenter.vdrc.at/control/main
- Verhulst, B., Neale, M. C., & Kendler, K. S. (2014). The heritability of alcohol use disorders: A meta-analysis of twin and adoption studies. *Psychological Medicine*, 45(5), 1061–1072. https://doi.org/10.1017/s0033291714002165



- Wang, Z., Pan, Y., Li, W., Jiang, H., Chatzimanolis, L., Chang, J., Gong, Z., & Liu, L. (2008).
   Visual pattern memory requires foraging function in the central complex of Drosophila.
   *Learning & Memory*, *15*(3), 133–142. https://doi.org/10.1101/lm.873008
- Weston, R. M., Schmitt, R. E., Grotewiel, M., & Miles, M. F. (2021). Transcriptome analysis of chloride intracellular channel knockdown in drosophila identifies oxidation-reduction function as possible mechanism of altered sensitivity to ethanol sedation. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/2021.01.20.427413
- WHO. (2018). Global status report on alcohol and health. Geneva: World Health Organization.
- Yamaguchi, M., & Yoshida, H. (2018). Drosophila as a model organism. In *Advances in Experimental Medicine and Biology* (pp. 1–10). Springer Singapore. http://dx.doi.org/10.1007/978-981-13-0529-0\_1
- Yuva-Aydemir, Y., Bauke, A.-C., & Klambt, C. (2011). Spinster controls dpp signaling during glial migration in the drosophila eye. *Journal of Neuroscience*, *31*(19), 7005–7015. https://doi.org/10.1523/jneurosci.0459-11.2011

Zeng, C., Justice, N. J., Abdelilah, S., Chan, Y.-M., Jan, L. Y., & Jan, Y. N. (1998). The Drosophila LIM-only gene, dLMO, is mutated in Beadex alleles and might represent an evolutionarily conserved function in appendage development. *Proceedings of the National Academy of Sciences*, *95*(18), 10637–10642.





## APPENDICES

## **Basic Fly Handling and Husbandry**

## A. Standard Fly Lab Lingo:

1. <u>Stock or strain</u>: a culture of flies with a particular genotype. Balanced stocks have a special chromosome called a balancer that is marked with a dominant phenotype and suppresses recombination on the corresponding sister chromosome. Balanced stocks are often weak (i.e. grow poorly).

2. Seeding: putting adult flies into a new bottle or vial. Also called 'setting-up'.

3. <u>Transfer</u>: moving flies without anesthesia from one vial or bottle to another. One-to-one transfer means moving flies from one bottle/vial to one new bottle/vial. Two-to-one transfer means moving flies from 2 vials/bottles to 1 new vial/bottle. Also called 'flipping'.

4. <u>Clearing</u>: removing all of the adults from a bottle or vial. Can be done with or without anesthesia.

5. <u>Anesthesia</u>: CO<sub>2</sub> used to temporarily immobilize flies.

6. <u>Brood:</u> refers to the number of times a set of adults has been used to seed bottles. Using flies for 2 broods is common, with 3 broods being possible in some cases.

7. <u>white plus  $(w^+)$ </u>: indicates eye color. white minus  $(w^-)$  flies have white eyes.  $w^+$  flies have eyes that can vary from light peach to deep red.

8. <u>Food:</u> All of our fly food currently has antibiotics on it (ampicillin, tetracycline and chloramphenicol; i.e. ATC). Yeasted (Y) food vials and bottles have live yeast on added. Yeasted food should be used for seeding new vials and bottles for *growing* flies. Non-yeasted (NY) food has no yeast on it and should be used to *house* flies prior to behavioral studies and for *storing* virgin females and males prior to setting-up crosses.

#### **B. Standard Fly Husbandry**

1. Remove necessary number of yeasted bottles or vials from the cold room. Use bottles to grow lots of flies for behavioral or other large experiments. Use vials for smaller numbers of flies in limited scale crosses or other small scale experiments.

2. Before putting in new flies, bottles and vials must be dried 2 hours to overnight in the environmental chamber so that <u>all condensation on the walls evaporates</u>. The food will pull away from the wall of the bottle or vial if they are over-dried. It is poor practice to use over-dried food.



3. Turn on the CO<sub>2</sub>. Clean microscope, CO<sub>2</sub> pad and counter with ethanol. Clean before starting, between each genotype and after you are finished. Be sure the CO<sub>2</sub> is on before putting ethanol on the pad.

4. Open CO<sub>2</sub> to pipette, invert bottle or vial, insert pipette along cotton plug and tap bottle/vial gently. Flies will become anesthetized quickly and should fall onto the plug and/or the neck of the bottle/vial.

5. Click off  $CO_2$  to pipette, remove  $CO_2$  pipette from vial/bottle. Hold inverted bottle/vial over  $CO_2$  pad. Remove plug and gently shake/tap flies onto pad into a pile. Return plug to bottle/vial and set aside.

6. Use brush or spatula to place anesthetized flies in a row and sort flies according to needs. Short  $CO_2$  times are important. For collecting flies that will be used in behavioral studies, goals are (1) all genotypes experience the same  $CO_2$  exposure and (2) all flies are anesthetized for less than 5 minutes.

7. Set-up new bottles/vials by putting sorted flies from step 6 into dried bottles/vials. Anesthetized flies should be kept on the wall of the bottle/vial. If they fall into the food, many of them will stick there and die. Robust strains such as w[A] will do well with 10 females (Q, see below) per bottle or 3 females per vial. It is good practice to include a comparable number of males ( $\mathcal{S}$ , see below). Weaker stocks will need more females, up to as many as 50 per bottle and 15 per vial. When working with a stock that is new to you it is good practice to seed bottles or vials with a range of females (10-25/bottle for example) and then use an optimum number thereafter based on how the various bottles/vials grow.

8. Insert cotton plug, invert new bottle/vial and tap anesthetized flies onto the plug. Lay the bottle/vial on its side, label with genotype and date. First broods (i.e. bottles or vials in which the flies are new parents) are marked with a single slash.

9. Wait for flies to regain locomotor activity. Turn bottles/vials upright and place in environmental chamber to grow.

10. Beginning at around 4 days after seeding, check bottles/vials daily for larval activity (darkish band on top of food). When larval activity is obvious, either discard the adults or—if a second brood is needed—transfer adults to new bottles/vials (dried appropriately). Label second brood with genotype, date and two slashes.

11. Beginning at around 4 days after seeding the second brood, check bottles/vials daily for larval activity. Discard adults when larval activity is obvious. If necessary, a third brood is possible in some cases.

12. You should expect to see obvious larval activity 4 to 7 days after seeding and obvious pupae 5-10 days after seeding. New adults should begin emerging ~10 days after seeding.



Some strains, especially balanced strains, can take up to 4 additional days to generate adults. Perfectly seeded bottle/vials will have robust larval activity followed by large numbers of pupae that populate the bottom three-fourths of the wall of the vial or bottle. Pupae will not typically be in the food or on the plug in these bottles. Large numbers of healthy adults suitable for experiments will emerge from perfectly seeded bottle/vials.

13. Common Problems: If your bottles/vials are too dry or wet (as described below), the resulting adults should not be used for behavioral, stress or gene expression studies. The resulting adults are fine genotype-wise and reproduction-wise, though, and can be used to setup new bottles/vials as necessary.

a. <u>Food too dry after 4-7 days of new adults in bottle/vial</u>: The food should not be so dry that it detaches from the wall of the bottle of vial and the pupae are in the food. In cases like this, the food was either over-dried, there were not enough females placed in the bottle/vial, or possibly both. If this occurs across several strains that have grown well in the past, it is likely due to over-drying. If it occurs with a subset of strains, it is more likely due to insufficient numbers of females being used for those specific strains. The appropriate fixes are to decrease drying time, add more females next time, or both.

When you transfer flies from the first to second brood or when clearing the second brood, note the quality of the culture and food. If the food in some bottle/vials is detached from the wall after 7 days, go ahead and transfer/clear the adults and then add ddH<sub>2</sub>O (NOT ETHANOL!) to the bottle/vial until the gap between the food and the wall is filled. In many cases this will help the larvae quite a lot and you still might get a decent yield of adults, although they might be delayed a few days due to lack of water.

b. <u>Food too wet after 4-7 days of new adults in bottle/vial</u>: The food should not be so wet that it runs down the wall of the bottle/vial when it is inverted and the pupae are on the plug. If this happens, the food was not dried sufficiently before adults were added, too many adults were added, or possibly both. If this occurs across several strains that have not had this problem in the past, it is likely due to under-drying the food. If it occurs with only a subset of strains, it is more likely due to too many females being added in those specific strains. The fixes are to increase the drying time for bottles/vials, decrease the number of females used, or both.

If you notice that your bottles are too wet when transferring from the first to second brood or when clearing the second brood, you can put a folded Kim wipe in the bottle/vial so that it touches both the food and the plug. This will not result in a miraculous drying of the bottle/vial, but it can convert a bottle/vial that is far too wet into one that can be managed with some care.

# C. The Basics of Setting-Up Crosses

1. You will need males (♂, mated or unmated) and virgin females (♀ with a 'v' on top) for your crosses. Grow bottles or vials as above for strains required to generate males and virgin females. For planning purposes, you can comfortably collect 50-100 males and/or 25-50 virgin females from a robust bottle. Likewise, you can probably count on collecting 15-20 males and 5-10 virgin females from each well-seeded vial.



2. Around day 10 after seeding, begin to collect virgin females, identified by their light body pigmentation and female genitalia (see below). Typically, one collects virgin females first thing in the morning, again around noon, and again last thing before leaving for the day.

3. Keep virgin females in non-yeasted vials with no more than 25 females/vial. Label each vial with genotype, date and number of virgins collected. Keep collected virgins in environmental chamber until ready to use. One will often collect virgin females over several days until a sufficient number of virgin females has been collected. Also, it is convenient to store virgin females in upside-down vials.

4. When sufficient numbers of virgin females have been collected (~10% more than you plan to use) or when it is obvious that you will be able to collect all the virgin females you will need, collect all males into non-yeasted vials needed for your crosses. Males are identified by their male genitalia (see below).

5. Set-out yeasted bottles or vials to warm and dry as described above. On the day of the cross, check all virgin female vials for larvae using the microscope. Any vials with larvae MUST be discarded because at least one of the females has mated. Use only virgin females from vials with no larvae.

6. To set-up a cross, anesthetize the males and check them, anesthetize the virgin females on the same plate and check them, and put appropriate numbers of males and females into yeasted bottles/vials as described in steps B7-B9 above. Handle them thereafter as described in B10-B12 above.



7. Make sure that you know what progeny to expect from your crosses before you set them up.



# **Ethanol Sedation Assay**

# A. Day before assay

1. Collect flies (reared for behavioral assays) in groups of 11 (single sex) under brief  $CO_2$  (~5 minutes) following standard procedures for behavioral assays. Collect only those flies that look healthy, are relatively the same size, have normal wings, and appear dry. Flies should be transferred from the  $CO_2$  plate into an Eppendorf tube using a funnel and then dumped from the Eppendorf tube into a non-yeasted vial.

2. Allow flies to recover overnight in upside-down non-yeasted food vials in the environmental chamber. It is possible to test a maximum of 24 vials of flies in a single experiment.

3. Dilute ethanol solution as necessary (85% is our standard concentration). ~250 ml of ethanol solution can be stored in a sealed 500ml bottle or other sealed container for a week without a problem. Make ethanol fresh <u>weekly</u>. Diluted ethanol is exothermic and should be <u>stored</u> <u>overnight at room temperature before use</u>.

# B. Day of assay

1. For each vial of flies to be tested, you will need (a) a clean, empty food vial; i.e. testing vial, (b) a new Flug, (c) a silicone #4 plug and (d) 1.0 ml of ethanol solution (85% ethanol is our standard concentration).

2. Turn on humidifier and allow relative humidity in testing room to rise to 55-65%. Temperature should be 20-23°C. Record humidity and temperature on test log.

3. Have someone else in the lab assign a unique code to each group of vials for each genotype and—IMPORTANTLY—record the code for later. Place coded vials with flies in testing room to acclimate.

4. Label empty testing vials to match codes on fly vials from B.3.

5. Construct a testing log by entering the code for each vial into the Test Log E or Test Log EE sheet within the Excel Sedation file SA E EE 6 min SIGMOIDAL 2015.10.05. Use a random or cycling order. Add other pertinent information (% ethanol, sex, etc.) to the Test Log worksheet and print for use during testing.

6. Using the Test Log as a guide, arrange coded food vials with flies and empty testing vials into matching arrays with 4 vials in each row. The maximum possible number of vials that can be tested in a single experiment is 24 vials (i.e. 6 rows of 4 vials each).



7. Transfer flies from food vials into matched/labeled testing vials one at a time and immediately insert Flugs into testing vials until Flugs are a uniform distance below the vial tops. Use the Fluginator to push Flugs down into vials.

8. Time 0 assessment: Grasp each vial individually with thumb and forefinger, tap gently on the table three times to knock flies to the bottom of the vial, wait 30 seconds and then count the number of flies that are immobile. Typically, this is 0 or 1 at time 0. Record the number of immobile flies for each vial at time 0 in the printed Testing Log.

9. Hereafter, each row of four vials will be handled as a set at staggered one-minute intervals.

Start timer counting up at time 0 and immediately begin adding 1 ml of ethanol to the Flug in the vials for the first row/set of 4 vials. Add ethanol to the vials at 5 second intervals in the order they will be tested. Add ethanol to the Flugs in a circular motion so that all ethanol is absorbed as uniformly as possible. When ethanol has been added to all four testing vials in the set, insert a silicone #4 plug in each vial to seal it.

At times 1, 2, 3, 4 and 5 minutes on the timer, add 1 ml of ethanol to the second, third, fourth and fifth sets of 4 vials, respectively. Continue inserting #4 plugs after adding ethanol to each set of 4 vials.

10. At time 6 minutes, test the first set of 4 vials by grasping the first vial with thumb and forefinger and then tapping gently on the table three times to knock flies to the bottom of the vial. Tap the other 3 vials in the set the same way at 5 second intervals. 30 seconds after tapping the first vial, count and record the total number of flies that are sedated. Count and record the number of sedated flies in the other 3 vials at 5 second intervals. Flies are scored as sedated if they do not appear to have productive locomotion.

| Vial | Тар        | Assess     |
|------|------------|------------|
| 1    | 6 min 0 s  | 6 min 30 s |
| 2    | 6 min 5 s  | 6 min 35 s |
| 3    | 6 min 10 s | 6 min 40 s |
| 4    | 6 min 15 s | 6 min 45 s |

The specific schedule is:

At times 7, 8, 9, 10 and 11 minutes, test the second, third, fourth, fifth and sixth sets of vials, respectively, as done for the first set.

11. At time 12 minutes, test the first set of 4 vials again as described in B10 and continue testing the second, third, fourth, fifth and sixth sets of vials at 13, 14, 15, 16 and 17 minutes, respectively.

Continue testing flies as described in B10 and B11 until all flies are sedated (typically 60-90 min).



12. Record the total number of flies in each vial.

13. Clean-up is (a) turn off humidifier, (b) remove #4 plugs for washing and reuse, (c) discard Flugs/vials/flies, (d) remove any trash from and straighten up testing room and (e) turn off light in testing room.

14. Enter the total number of flies in each vial and the number of flies sedated at each time point in the Test Log within the Excel worksheet. Percent Active flies will be automatically calculated and graphed below the Test Log. Press 'Ctrl + s' to calculate ST50s for each vial and sort the data by group in the Sorted Data worksheet.

15. Note any flagged data in Sorted Data worksheet. Consider excluding data that looks qualitatively poor.

M Grotewiel, R Schmitt, K Lee: 7/2014, 3/2015, 7/2016



# List of lethal RNAi's tested in Chapter 2

| Gene  | RNAi      |
|-------|-----------|
| unc79 | HMC03213  |
| Bx    | KK108513  |
| Bx    | GL00484   |
| CtBP  | KK108401  |
| CtBP  | HMS00677  |
| Fas2  | KK100888  |
| For   | HMS004486 |



www.manaraa.com

## RNA Prep

#### Part A: Fly collection

Whole body fly collection

- 1. Collect 25 flies of desired age, genotype and gender in a 1.5mL snap cap tube. 1 tube = 1 n. Place tubes on ice immediately after flies enter tube.
- 2. Once done collecting, place flies in -80. Once flies are frozen and dead, you can proceed to Part B

## Head Preps

- Collect whole body flies of desired age, genotype and gender in a conical tube. 1 tube = 1 n. For head preps, about 250 flies should be in each tube (absolute minimum = 150 flies, but this is not recommended). Store flies on ice at all times. After each collection, place flies immediately back in the -80 freezer.
- 2. Once collected, bring the following equipment to the cold room
  - large plastic box
  - styrofoam box with sieve and tube holder in it
  - large metal forceps
  - a vortex
  - funnel(s)
  - large orange-capped conical tubes → ONLY USE CAPS WITH HOLES
  - labeled 1.7 snap-cap tubes for the number of preps you are doing
  - Cryogloves → WEAR AT ALL TIMES
- 3. Obtain liquid N<sub>2</sub> (in dewar) and dry ice (in styrofoam container) from 6<sup>th</sup> floor supply center.  $3/4^{th}$  full liquid N<sub>2</sub> and 1/2 full dry ice is sufficient for ~12 preps.
- 4. Store samples on dry ice before and after prep.
- 5. Fill conical tube 3/4 full (in styrofoam container) with liquid N<sub>2</sub>.
- 6. Add flies to tube, screw on cap <u>WITH HOLES</u> (or it will violently explode), and vortex (stopping as little as possible) until the liquid N<sub>2</sub> is almost gone (~1 min).
- 7. Repeat—filling tube with flies 1/2 full with N<sub>2</sub> and vortexing again.
- 8. Pour N<sub>2</sub> into sieve so it is sufficiently cold (otherwise the flies will stick and you'll get nothing). Dump flies into sieve and beat laterally with heavy forceps for several minutes.
- 9. Using funnel, quickly collect heads (middle layer) or bodies (top layer) using funnel and labeled 1.7 snap-cap tube.

9. Between genotypes: take a break to clean and completely dry sieve (or it will freeze together and form an ice layer over the holes). Get a new funnel and conical tube.

10. Store at -80°C until use.

\*\*Wear safety glasses, lab coat, 2 pairs of latex gloves and cryo gloves (plus warm clothes and long pants).



#### Part B: RNA extraction

- \*\* All water used is DEPC water
- \*\* Samples must be kept on ice at all times, unless otherwise stated
- 1. Wipe down bench and all pipettes, pipette boxes, ect with 100% ETOH. Place clean plastic pestles in 50mL conical tube, cover pestles with chloroform, and let them soak for 20 minutes. Transfer pestles to new clean empty 50mL conical tube and allow to air dry for 20 minutes.

\*\* all chloroform is stored under the hood, and any procedures involving chloroform should always be done under the hood

- 2. While under the fume hood, add 250µL Trizol (pink, stored in fridge) to each tube of flies. Homogenize for 1 minute with drill and pestle
- 3. Add 100µL of chloroform to each tube. Vortex for 15 seconds. Incubate for 3 minutes at room temperature
- 4. Centrifuge samples at maximum speed (14,000 x g) for 15 minutes in the cold room
- 5. Label new 1.5mL tubes appropriately. Remove roughly 200µL of the upper aqueous phase and place in new tube. If you accidently pipette any fly parts or other liquid, centrifuge that sample again (i.e. repeat step 4) and then attempt this step. Discard tubes with fly parts and the pink liquid.
- Add 250µL isopropanol (labeled ISO in RNA reagents station) to each tube containing the upper aqueous sample. Invert the tube 10 times. Incubate samples for 10 minutes at room temperature. After, centrifuge samples at maximum speed (14,000 x g) for 10 minutes in cold room
- 7. Continue with Qiagen RNeasy MiniKit protocol



## Fisher's Test R Script from Michael Miles

The contingency table cells are as follows:  $n_A_B = \text{overlapping genes between A and B}$  $n_A = \text{number of genes in group A}$  $n_B = \text{number of genes in group B}$  $n_C = \text{number of genes in genome (mouse)}$ 

matrix=matrix(c(n\_A\_B,n\_A,n\_B,n\_C-(n\_B+n\_A+n\_A\_B)),2,2) matrix sum(matrix) fisher.test(matrix)



# 342 Mef2 bound genes and 581 human orthologs described in Chapter 2

| Mef2 Bound gene | Human Ortholog | DIOPT Score |
|-----------------|----------------|-------------|
| jar             | MYO6           | 14          |
| tlk             | TLK2           | 11          |
|                 | TLK1           | 8           |
| CG11405         | ATF3           | 5           |
|                 | JDP2           | 4           |
|                 | FOS            | 3           |
|                 | FOSL1          | 3           |
|                 | FOSL2          | 3           |
|                 | ATF7           | 2           |
|                 | ATF2           | 2           |
|                 | CREB5          | 2           |
| l(1)G0007       | DHX38          | 13          |
| Gga             | GGA1           | 13          |
|                 | GGA2           | 12          |
|                 | GGA3           | 13          |
| HDAC4           | HDAC4          | 11          |
|                 | HDAC5          | 10          |
|                 | HDAC9          | 9           |
|                 | HDAC7          | 8           |
| Ptp61F          | PTPN2          | 11          |
|                 | PTPN1          | 11          |
| CG14186         | none           |             |
| tara            | none           |             |
| CG34299         | none           |             |
| l(2)k16918      | none           |             |
| CG18317         | SLC25A36       | 14          |
|                 | SLC25A33       | 10          |
| bun             | TSC22D1        | 10          |
|                 | TSC22D2        | 7           |
|                 | TSC22D4        | 5           |
|                 | TSC22D3        | 5           |



| none     |                                                                                                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 1.1                                                                                                                                                                       |
| SLC25A42 | 14<br>                                                                                                                                                                    |
| SLC2SA10 | 5                                                                                                                                                                         |
| PRKG1    | 13                                                                                                                                                                        |
| PRKG2    | 5                                                                                                                                                                         |
| SLC6A7   | 5                                                                                                                                                                         |
| none     |                                                                                                                                                                           |
| none     |                                                                                                                                                                           |
| STK39    | 14                                                                                                                                                                        |
| OXSR1    | 13                                                                                                                                                                        |
| FGF20    | 7                                                                                                                                                                         |
| FGF16    | 6                                                                                                                                                                         |
| FGF9     | 5                                                                                                                                                                         |
| FGF10    | 5                                                                                                                                                                         |
| FGF22    | 5                                                                                                                                                                         |
| FGF13    | 5                                                                                                                                                                         |
| FGF4     | 5                                                                                                                                                                         |
| FGF6     | 5                                                                                                                                                                         |
| FGF5     | 5                                                                                                                                                                         |
| FGF11    | 5                                                                                                                                                                         |
| none     |                                                                                                                                                                           |
| ATP8A1   | 14                                                                                                                                                                        |
| ATP8A2   | 12                                                                                                                                                                        |
| none     |                                                                                                                                                                           |
| BAG3     | 9                                                                                                                                                                         |
| BAG4     | 6                                                                                                                                                                         |
| TKTL2    | 14                                                                                                                                                                        |
| ткт      | 14                                                                                                                                                                        |
| TKTL1    |                                                                                                                                                                           |
| KLF11    | 6                                                                                                                                                                         |
| none     |                                                                                                                                                                           |
| MROH1    | 13                                                                                                                                                                        |
| MROH2B   | 9                                                                                                                                                                         |
|          | noneSLC25A42SLC25A16PRKG1PRKG2SLC6A7SLC6A7nonenoneSTK39OXSR1FGF20FGF16FGF16FGF10FGF12FGF13FGF13FGF4FGF5FGF11noneATP8A1ATP8A1ATP8A1BAG3BAG4TKTL2TKTL1KLF11NONEMROH1MROH12B |


|            | MROH2A  | 8  |
|------------|---------|----|
| Gpdh       | GPD1    | 14 |
|            | GPD1L   | 12 |
| dpp        | BMP2    | 9  |
|            | BMP4    | 8  |
| d          | none    |    |
| Hr38       | NR4A2   | 13 |
|            | NR4A3   | 11 |
|            | NR4A1   | 10 |
| Pdp1       | HLF     | 11 |
|            | DBP     | 8  |
|            | TEF     | 8  |
| jdp        | DNAJC12 | 11 |
| сwo        | HES1    | 2  |
|            | HES2    | 2  |
|            | HES4    | 2  |
| Kr-h1      | none    |    |
| mrj        | DNAJB2  | 11 |
|            | DNAJB6  | 11 |
|            | DNAJB7  | 10 |
|            | DNAJB8  | 9  |
| Atf-2      | NPDC1   | 7  |
|            | ATF7    | 6  |
|            | CREB5   | 6  |
|            | ATF2    | 6  |
| crp        | TFAP4   | 11 |
| CG18472    | SPAG1   | 9  |
|            | TOMM34  | 6  |
| mt:ATPase8 | none    |    |
| Rim        | RIMS1   | 10 |
|            | RIMS2   | 10 |
|            | RIMS3   | 7  |
|            | RIMS4   | 6  |



| sr         | EGR2    | 6  |
|------------|---------|----|
|            | EGR3    | 5  |
|            | EGR1    | 5  |
| hts        | ADD1    | 14 |
|            | ADD2    | 11 |
|            | ADD3    | 11 |
| CG14322    | none    |    |
| dnc        | PDE4B   | 12 |
|            | PDE4D   | 10 |
|            | PDE4C   | 9  |
|            | PDE4A   | 8  |
| CG7337     | WDR62   | 10 |
|            | MAPKBP1 | 10 |
| spen       | SPEN    | 11 |
| CG9775     | none    |    |
| Cyp6w1     | CYP3A4  | 7  |
|            | CYP3A43 | 7  |
| CG4662     | MICU3   | 14 |
|            | MICU2   | 5  |
| Eip75B     | none    |    |
| rdx        | SPOP    | 10 |
|            | SPOPL   | 9  |
| l(2)k01209 | UCKL1   | 13 |
| cnc        | NFE2L2  | 8  |
|            | NFE2L1  | 8  |
|            | NFE2    | 7  |
|            | NFE2L3  | 5  |
| Mnt        | MNT     | 6  |
| CG14497    | none    |    |
| Nfl        | NFIA12  |    |
|            | NFIC    | 11 |
|            | NFIB    | 11 |
|            | NFIX    | 10 |
|            |         |    |



| mt:Cyt-b | СҮТВ    | 10 |
|----------|---------|----|
| CG9005   | FAM214A | 8  |
|          | FAM214B | 5  |
| miple    | none    |    |
| CG32647  | DGCR2   | 6  |
| CG4966   | HPS4    | 9  |
| CG14509  | none    |    |
| CG10365  | CHAC1   | 12 |
|          | CHAC2   | 5  |
| vri      | NFIL3   | 7  |
| CG9813   | none    |    |
| PRL-1    | PTP4A2  | 12 |
|          | PTP4A1  | 11 |
|          | PTP4A3  | 8  |
| milt     | TRAK1   | 13 |
|          | TRAK2   | 11 |
| sif      | TIAM1   | 11 |
|          | TIAM2   | 8  |
| CG15926  | none    |    |
| CG31183  | NPR2    | 13 |
|          | NPR1    | 13 |
| IA-2     | PTPRN   | 11 |
|          | PTPRN2  | 10 |
| EDTP     | MTMR14  | 12 |
| ph-p     | PHC3    | 9  |
|          | PHC2    | 6  |
|          | PHC1    | 5  |
| CG1869   | CHIT1   | 11 |
|          | CHIA    | 10 |
|          | CHI3L1  | 8  |
|          | CHI3L2  |    |
| CG34360  | ZNF704  | 10 |
|          | ZNF395  | 9  |



|          | SLC2A4RG | 6  |
|----------|----------|----|
| Hex-A    | GCK      | 13 |
|          | HK1      | 10 |
|          | HKDC1    | 9  |
|          | НКЗ      | 9  |
|          | HK2      | 9  |
| nmo      | NLK      | 14 |
| сро      | RBPMS    | 9  |
|          | RBPMS2   | 8  |
| NK7.1    | none     |    |
| CdGAPr   | ARHGAP32 | 9  |
|          | ARHGAP32 | 9  |
|          | ARHGAP31 | 5  |
| Oscillin | GNPDA2   | 14 |
|          | GNPDA1   | 13 |
| kirre    | KIRREL3  | 11 |
|          | KIRREL1  | 11 |
|          | KIRREL2  | 10 |
| CG30389  | MACO1    | 13 |
| mib      | none     |    |
| CG14515  | none     |    |
| CG9339   | TBC1D24  | 14 |
| CG10737  | C2CD2    | 6  |
| lola     | none     |    |
| Fit1     | FERMT2   | 14 |
|          | FERMT1   | 13 |
|          | FERMT3   | 10 |
| CG7272   | SLC50A1  | 5  |
| CG4599   | DNAJC7   | 13 |
| CG32626  | AMPD2    | 13 |
|          | AMPD3    | 5  |
|          | AMPD1    | 5  |
| CG14207  | HSPB1    | 5  |



|            | CRYAA   | 5  |
|------------|---------|----|
| fru        | none    |    |
| CG11347    | none    |    |
| CG17836    | none    |    |
| 14-3-3zeta | YWHAZ   | 13 |
|            | YWHAB   | 11 |
|            | YWHAH   | 6  |
|            | YWHAG   | 6  |
|            | YWHAQ   | 5  |
|            | SFN     | 5  |
| l(3)82Fd   | OXR1    | 12 |
|            | NCAO7   | 12 |
|            | TLDC2   | 5  |
| nrv1       | ATP1B1  | 14 |
|            | ATP1B2  | 12 |
|            | ATP1B3  | 10 |
|            | ATP1B4  | 9  |
|            | ATP4B   | 7  |
| Dad        | SMAD7   | 10 |
|            | SMAD6   | 9  |
| Mi-2       | CHD5    | 12 |
|            | CHD3    | 12 |
|            | CHD4    | 11 |
| CG32432    | none    |    |
| CG9413     | SLC7A9  | 14 |
|            | SLC7A13 | 5  |
|            | SLC7A6  | 5  |
|            | SLC7A5  | 5  |
|            | SLC7A8  | 5  |
|            | SLC7A7  | 4  |
| capt       | CAP1    | 14 |
|            | CAP2    | 12 |
| CG31183    | NPR2    | 13 |
|            |         |    |



|         | NPR1    | 13 |
|---------|---------|----|
| CG10947 | CAMKMT  | 12 |
| CG32486 | CYHR1   | 15 |
| Argk    | СКМ     | 11 |
|         | CKMT2   | 10 |
|         | СКВ     | 10 |
|         | CKMT1A  | 9  |
|         | CKMT1B  | 5  |
| exba    | BZW1    | 14 |
|         | BZW2    | 12 |
| CG33523 | MOSPD2  | 14 |
| CG3161  | HES1    | 7  |
|         | ATP6V0C | 13 |
|         | HES4    | 7  |
|         | HES2    | 5  |
| EcR     | NR1H3   | 10 |
|         | NR1H2   | 9  |
| CG4068  | SINHCAF | 9  |
| CG34417 | SMTNL1  | 5  |
| CG8321  | ARL6IP6 | 5  |
| CG9990  | none    |    |
| W       | ABCG2   | 8  |
|         | ABCG1   | 6  |
|         | ABCG4   | 5  |
| tt∨     | EXT1    | 13 |
|         | EXTL1   | 6  |
| Sdc     | SDC4    | 6  |
|         | SDC1    | 6  |
|         | SDC2    | 6  |
|         | SDC3    | 5  |
| kst     | SPTBN5  | 13 |
|         | SPTBN2  | 3  |
|         | SPTBN1  | 3  |



|             | SPTBN4   | 3  |
|-------------|----------|----|
| chic        | PFN4     | 9  |
| stv         | BAG4     | 6  |
| CG9005      | FAM214A  | 5  |
| SelR        | MSRB3    | 14 |
|             | MSRB2    | 7  |
| CG31915     | COLGALT2 | 13 |
|             | COLGALT1 | 12 |
|             | CERCAM   | 11 |
| bocksbeutel | none     |    |
| Cbp53E      | CALB2    | 11 |
|             | CALB1    | 10 |
|             | SCGN     | 9  |
| Sema-1a     | SEMA6A   | 8  |
|             | SEMA6B   | 6  |
|             | SEMA6C   | 6  |
|             | SEMA3D   | 5  |
|             | SEMA3A   | 5  |
| CG30421     | USP31    | 11 |
|             | USP43    | 10 |
| CG4766      | MAB21L2  | 14 |
|             | MAB21L1  | 12 |
| CG32813     | none     |    |
| CG7458      | SLC22A1  | 5  |
| CG7458      | SLC22A13 | 5  |
|             | SLC22A3  | 5  |
|             | SLC22A12 | 5  |
|             | SLC22A11 | 5  |
|             | SCL22A14 | 5  |
|             | SLC22AG  | 5  |
|             | SLC22A4  | 5  |
|             | SCL22A5  | 5  |
|             | SLC22A13 | 5  |



|         | SLC22A3  | 5  |
|---------|----------|----|
|         | SLC22A12 | 5  |
|         | SLC22A11 | 5  |
|         | SLC22A14 | 5  |
| CG7990  | PGAP2    | 5  |
| Klp98A  | KIF16B   | 11 |
| CG3600  | NR6A1    | 8  |
| wun     | PLPP1    | 14 |
|         | PLPP3    | 12 |
|         | PLPP2    | 9  |
| CG18812 | GDAP2    | 14 |
| CG10311 | none     |    |
| DopEcR  | none     |    |
| cdc14   | CDC14B   | 10 |
|         | CDC14A   | 9  |
|         | CDC14    | 5  |
| ari-2   | ARIH2    | 15 |
| CG8745  | ETNPPL   | 14 |
|         | PHYKPL   | 11 |
| drongo  | AGFG1    | 10 |
|         | AGFG2    | 5  |
| Slob    | none     |    |
| wdb     | PPP2R5E  | 13 |
|         | PPP2R5A  | 12 |
|         | PPP2R5B  | 9  |
|         | PPP2R5C  | 5  |
| kek4    | none     |    |
| Sin3A   | SIN3A    | 13 |
|         | SIN3B    | 13 |
| sty     | SPRY2    | 11 |
|         | SPRY4    | 9  |
|         | SPRY3    | 9  |
|         | SPRY1    | 9  |



| Pdk       | PDK3     | 14 |
|-----------|----------|----|
|           | PDK2     | 13 |
|           | PDK1     | 13 |
|           | PDK4     | 13 |
| Top1      | TOP1     |    |
|           | TOP1MT   |    |
| CG31140   | DGKQ     | 14 |
| drp       | none     |    |
| Or45b/?   |          |    |
| CG11033   | KDM2A    | 13 |
|           | KDM2B    | 11 |
| CG12433   | none     |    |
| sdk       | SDK2     | 11 |
|           | SDK1     | 10 |
| RhoGAP19D | ARHGAP23 | 8  |
|           | ARHGAP21 | 7  |
| tai       | NCOA3    | 5  |
|           | NCOA1    | 5  |
|           | NCOA2    | 5  |
| CG12355   | MPV17L   |    |
| 5-HT7     | HTR7     | 6  |
|           | HTR1B    | 4  |
| CG14234   | TMEM198  | 13 |
| comm3     | none     |    |
| cn        | КМО      | 14 |
| Mef2      | MEF2C    | 11 |
|           | MEF2A    | 11 |
|           | MEF2D    | 10 |
|           | MEF2B    | 5  |
| CG33724   | none     |    |
| Blimp-1   | PRDM1    | 12 |
|           | ZNF683   | 5  |
| CG10419   | GEMIN2   | 13 |



| cdi       | TESK2           | 8  |
|-----------|-----------------|----|
|           | TESK1           | 6  |
| Rtnl1     | RTN4            | 9  |
|           | RTN3            | 9  |
|           | RTN1            | 9  |
|           | RTN2            | 7  |
| CrebB-17A | CREB1           | 13 |
|           | CREM            | 11 |
|           | ATF1            | 10 |
| kay       | FOSL2           | 6  |
| Bx        | LMO1            | 8  |
|           | LMO3            | 7  |
| CG3703    | RUNDC1          | 14 |
| CG6398    | none            |    |
| stnA      | none            |    |
| CG18135   | GPCPD1          | 8  |
| Cyp6v1    | CYP3A43         | 5  |
|           | CYP3A7-CYP3A51P | 5  |
|           | TBXAS1          | 4  |
| foi       | SLC39A10        |    |
|           | SLC39A6         |    |
|           | SLC39A4         |    |
| Pkn       | PKN2            | 13 |
|           | PKN1            | 12 |
|           | РКNЗ            | 10 |
| CG7378    | DUPD1           | 8  |
|           | DUSP13          | 8  |
|           | DUSP26          | 7  |
|           | DUSP3           | 5  |
|           | DUSP10          | 5  |
| Hr38      | NR4A2           | 13 |
|           | NR4A3           | 11 |
|           | NR4A1           | 10 |



| PUM2    | 12                                                                                                                                                            |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PUM1    | 11                                                                                                                                                            |
| IDH1    | 14                                                                                                                                                            |
| IDH2    | 5                                                                                                                                                             |
| none    |                                                                                                                                                               |
| NCAM1   | 11                                                                                                                                                            |
| NCAM2   | 11                                                                                                                                                            |
| PAH     | 14                                                                                                                                                            |
| REEP2   | 9                                                                                                                                                             |
| REEP4   | 8                                                                                                                                                             |
| REEP1   | 8                                                                                                                                                             |
| REEP3   | 7                                                                                                                                                             |
| NFAT5   | 7                                                                                                                                                             |
| NFATC3  | 6                                                                                                                                                             |
| NFATC2  | 5                                                                                                                                                             |
| none    |                                                                                                                                                               |
| none    |                                                                                                                                                               |
| CTBP2   | 14                                                                                                                                                            |
| CTBP1   | 12                                                                                                                                                            |
| R3HCC1L | 10                                                                                                                                                            |
| R3HCC1L | 6                                                                                                                                                             |
| SLC17A2 | 5                                                                                                                                                             |
| SLC17A3 | 5                                                                                                                                                             |
| SLC17A4 | 5                                                                                                                                                             |
| SLC17A5 | 5                                                                                                                                                             |
| SLC17A7 | 5                                                                                                                                                             |
| SLC17A8 | 5                                                                                                                                                             |
| AKAP1   | 11                                                                                                                                                            |
| FRMPD4  | 9                                                                                                                                                             |
| FRMPD3  | 5                                                                                                                                                             |
| FRMPD1  | 5                                                                                                                                                             |
| none    |                                                                                                                                                               |
| USP2    | 9                                                                                                                                                             |
|         | PUM2PUM1IDH1IDH2noneNCAM1NCAM2PAHREEP2REEP1REEP3NFAT5NFATC3NFATC2NFATC2NFATC2NFATC2REP1SLC17A3SLC17A3SLC17A4SLC17A5SLC17A5SLC17A8AKAP1FRMPD3FRMPD1noneSLC17A8 |



|         | SUP21   | 6  |
|---------|---------|----|
|         | MPRIP   |    |
| osp     | MPRIP   | 9  |
|         | TRIOBP  | 6  |
| Lasp    | LASP1   | 9  |
| CG4238  | AREL1   | 13 |
| CG6191  | CABLES1 | 10 |
|         | CABLES2 | 8  |
| ph-d    | PHC3    | 7  |
|         | PHC2    | 6  |
|         | PHC1    | 4  |
| Ptr     | PTCHD3  | 11 |
|         | PTCHD1  | 7  |
|         | PTCHD4  | 7  |
| Bsg     | NPTN    | 8  |
|         | BSG     | 7  |
| CG32369 | LONRF3  | 12 |
|         | LONRF2  | 12 |
|         | LONRF1  | 11 |
| Thd1    | TDG     | 10 |
| Fmr1    | FXR1    | 12 |
|         | FXR2    | 11 |
|         | FMR1    | 11 |
| CG15630 | NCAM2   | 4  |
|         | NCAM1   | 4  |
| bin3    | MEPCE   | 10 |
| spir    | SPIRE1  | 13 |
|         | SPIRE2  | 11 |
| cg      | none    |    |
| tamo    | SPATA2  | 7  |
|         | SPATA2L | 5  |
| CG16944 | SLC25A4 | 12 |
|         | SLC25A5 | 10 |



|             | SLC25A6  | 9  |
|-------------|----------|----|
|             | SLC25A31 | 8  |
| CG9007      | KMT2E    | 8  |
|             | SETD5    | 8  |
| CG8032      | PAOX     | 13 |
|             | SMOX     | 10 |
| CG5122      | CRAT     | 7  |
| bip1        | none     |    |
| h           | none     |    |
| CHES-1-like | FOXn3    | 6  |
| Smr         | NCOR     | 10 |
|             | NCSO2    | 9  |
| CG1600      | none     |    |
| shakB       | none     |    |
| CG1888      | none     |    |
| sr          | none     |    |
| NK7.1       | none     |    |
| CG8490      | none     |    |
| CG6770      | NUPR1    | 8  |
|             | NUPR5    | 5  |
| Sema-1a     | none     |    |
| CG11489     | SRPK3    | 9  |
|             | SRPK1    | 8  |
|             | SRPK2    | 8  |
| jim         | none     |    |
| CG14764     | none     |    |
| tau         | MAPT     | 7  |
|             | MAP4     | 6  |
|             | MPA2     | 5  |
| Trp1        | SEC6S    | 13 |
| elB         | ZNF703   | 9  |
|             | ANF503   | 8  |
| CG30492     | ZFAND6   | 12 |



|         | ZFAND5   | 11 |
|---------|----------|----|
| CG5237  | UNC79    | 14 |
| Act5C   | АСТВ     | 11 |
|         | ACTG1    | 10 |
|         | POTEJ    | 5  |
|         | POTEI    | 5  |
|         | POTEF    | 5  |
| Mbs     | PPP1R12B | 13 |
|         | PPP1R12A | 10 |
|         | PPP1R12C | 5  |
| CG12214 | TBCEL    | 14 |
| CG31150 | none     |    |
| Nmdmc   | MTHFD2   | 14 |
|         | MTHFD2   | 12 |
| CG13330 | none     |    |
| sick    | NAV2     | 9  |
|         | NAV3     | 7  |
| CG1090  | none     |    |
| th      | DBH      | 15 |
|         | ТН       | 15 |
|         | TXNRD2   | 10 |
|         | XIAP     | 7  |
|         | BIRC3    | 6  |
|         | BIRC2    | 6  |
|         | TXNRD1   | 5  |
| glob1   | CYGB     | 9  |
| glob1   | HBG2     | 5  |
|         | HBE1     | 5  |
|         | HBG1     | 5  |
| d       | none     |    |
| oa2     | none     |    |
| Eip75B  | none     |    |
| CG5830  | CTDSPI1  | 15 |



|         | CTDSPL   | 12 |
|---------|----------|----|
|         | CTDSP2   | 12 |
| spin    | SPNS1    | 13 |
|         | SPNS3    | 9  |
|         | SPNS2    | 9  |
| CG10543 | none     |    |
| Lis-1   | PAFAH1B1 | 14 |
| ctp     | DYNLL2   | 13 |
|         | DYNLL1   | 9  |
| CG8489  | none     |    |
| Sp7     | none     |    |
| CG9335  | none     |    |
| stck    | LIMS1    | 14 |
|         | LIMS2    | 13 |
|         | LIMS4    | 5  |
| retn    | ARID3A   | 11 |
|         | ARID3C   | 9  |
|         | ARID3B   | 8  |
| aret    | CELF2    | 14 |
|         | CELF1    | 14 |
| CG5807  | LMBR1L   | 14 |
|         | LMBR1    | 13 |
| CG7982  | AGAP1    | 13 |
|         | AGAP3    | 11 |
|         | AGAP2    | 9  |
|         | AGAP4    | 7  |
|         | AGAP5    | 6  |
|         | AGAP6    | 6  |
| CG7378  | none     |    |
| Atg4    | ATG4A    | 14 |
|         | ATG4D    | 13 |
|         | ATG4B    | 13 |
|         | ATG4C    | 12 |



| dpp     | none   |    |
|---------|--------|----|
| CG34113 | none   |    |
| CG5346  | none   |    |
| CG32138 | FMNL3  | 13 |
|         | FMNL1  | 13 |
|         | FMNL2  | 11 |
| emc     | ID4    | 10 |
|         | ID1    | 10 |
|         | ID2    | 9  |
|         | ID3    | 8  |
| CG10737 | none   |    |
| Inos    | ISYNA1 | 13 |
| Alh     | MLLT6  | 7  |
|         | MLLT10 | 6  |
| CG11791 | none   |    |
| TepIII  | CD109  | 11 |
|         | PZP    | 6  |
|         | A2M    | 6  |
|         | A2ML1  | 5  |
|         | C5     | 5  |
| dl      | REL    | 9  |
|         | RELB   | 7  |
|         | RELA   | 6  |
| CG13624 | CREBRF | 8  |
| CG33967 | WWC2   | 13 |
|         | WWC1   | 13 |
|         | WWC3   | 11 |
| mys     | ITGB1  | 14 |
| -       | ITGB2  | 10 |
|         | ITGB7  | 10 |
|         | ITGB3  | 8  |
|         | ITGB6  | 6  |
|         | ITGB5  | 5  |



|             | ITGB4   | 5  |
|-------------|---------|----|
| Pk61C       | PDPK1   | 13 |
|             | PDPK2P  | 5  |
| CG3927      | KHDRBS3 | 7  |
|             | KHDRBS1 | 7  |
|             | KHDRBS2 | 6  |
| Pect        | PCYT2   | 14 |
| CG3847      | none    |    |
| alt         | none    |    |
| InR         | IGF1R   | 12 |
|             | INSR    | 10 |
|             | INSRR   | 9  |
| Oda         | OAZ2    | 9  |
|             | OAZ1    | 8  |
|             | OAZ3    | 7  |
| lin-52      | LIN52   | 12 |
| tud         | TDRD6   | 10 |
|             | TDRD15  | 9  |
| unc-104     | KIF1A   | 11 |
|             | KIF1B   | 9  |
|             | KIF1C   | 6  |
| puc         | DUSP10  | 8  |
| sgg         | GSK3B   | 12 |
|             | GSK3A   | 11 |
| CG5758      | none    |    |
| CG31738     | FNDC3A  | 12 |
|             | FNDC3B  | 9  |
| CG8486      | PIEZO2  | 13 |
|             | PIEZO1  | 10 |
| hig         | none    |    |
| CG31300     | none    |    |
| CHES-1-like | none    |    |
| CG32352     | none    |    |



| Pvf3       | none     |    |
|------------|----------|----|
| caps       | LRRN2    | 5  |
|            | LRRC70   | 2  |
| rdgBbeta   | PITPNC1  | 14 |
| jeb        | none     |    |
| CG12054    | JAZF1    | 11 |
| CG2225     | none     |    |
| CG33144    | RNF144A  | 10 |
|            | RNF144B  | 5  |
| aralar1    | none     |    |
| tws        | PPP2R2D  | 15 |
|            | PPP2R2A  | 13 |
|            | PPP2R2B  | 13 |
|            | PPP2R2C  | 11 |
| Hsromega   | none     |    |
| Ald        | ALDOC    | 13 |
|            | ALDOA    | 13 |
|            | ттк      | 10 |
|            | ALDOB    | 11 |
| scyl       | DDIT4    | 11 |
|            | DDIT4L   | 11 |
| mbc        | DOCK1    | 13 |
|            | DOCK2    | 12 |
|            | DOCK5    | 11 |
|            | DOCK3    | 5  |
| CG31619    | ADAMTSL3 | 10 |
|            | ADAMTSL1 | 9  |
| Eip74EF    | ELF2     | 7  |
| betaTub56D | TUBB4B   | 12 |
|            | TUBB4A   | 8  |
|            | TUBB     | 8  |
|            | TUBB2B   | 8  |
|            | TUBB2A   | 6  |



|           | TUBB6    | 5  |
|-----------|----------|----|
| CG9086    | UBR2     | 14 |
|           | UBR1     | 12 |
| brk       | none     |    |
| Sara      | ZFYVE16  | 11 |
|           | ZFYVE9   | 11 |
| PGRP-LC   | none     |    |
| Treh      | TREH     | 14 |
| beat-lib  | none     |    |
| sba       | MBD5     | 7  |
| osp       | none     |    |
| beta-Spec | SPTB     | 11 |
| Ack       | TBK2     | 12 |
|           | TBK1     | 8  |
| pk        | PRICKLE2 | 12 |
|           | PRICKLE1 | 11 |
|           | PRICKLE3 | 10 |
| glec      | none     |    |
| scrib     | SCRIB    | 7  |
| Dhc93AB   | DNAH9    | 14 |
|           | DNAH17   | 11 |
|           | DNAH11   | 8  |
| SK        | KCNN1    | 11 |
|           | KCNN2    | 10 |
|           | KCNN3    | 10 |
| CG14207   | HSPB1    | 5  |
| Rdl       | none     |    |
| CG5151    | none     |    |
| l(1)G0232 | PTPN9    | 11 |
| shep      | RBMS3    | 11 |
|           | RBMS2    | 10 |
|           | RBMS1    | 10 |
| LpR1      | VLDLR    | 11 |



|         | LDLR   | 9  |
|---------|--------|----|
|         | LRP8   | 9  |
| klg     | none   |    |
| Msp-300 | SYNE1  | 5  |
| Pfrx    | PFKFB1 | 13 |
|         | PFKFB3 | 12 |
|         | PFKFB4 | 12 |
|         | PFKFB2 | 11 |



www.manaraa.com

## 928 human externalizing behavior genes and respective fly orthologs described in Chapter 2

| gene # | 928 genes | fly ortholog | DIOPT | FBGN        |
|--------|-----------|--------------|-------|-------------|
| 1      | SEMA6D    | Sema1a       | 8     | FBGN011259  |
|        |           | Sema1b       | 7     | FBGN016059  |
| 2      | CADM2     | none >5      |       |             |
| 3      | LSAMP     | Ama          | 8     | FBGN0000071 |
|        |           | DIP-epsilon  | 8     | FBGN0259714 |
|        |           | DIP-kappa    | 8     | FBGN0051814 |
|        |           | DIP-alpha    | 7     | FBGN0052791 |
|        |           | DIP-eta      | 7     | FBGN0031725 |
|        |           | DIP-iota     | 7     | FBGN0031837 |
|        |           | DIP-beta     | 7     | FBGN0259245 |
|        |           | DIP-theta    | 6     | FBGN0051646 |
|        |           | DIP-zeta     | 6     | FBGN0051708 |
|        |           | DIP-gamma    | 6     | FBGN0039617 |
|        |           | DIP-delta    | 6     | FBGN0085420 |
|        |           | Lac          | 5     | FBGN0010238 |
| 4      | TENM2     | Ten-m        | 13    | FBGN0004449 |
|        |           | Ten-a        | 11    | FBGN0267001 |
| 5      | SDK1      | sdk          | 10    | FBGN0021764 |
| 6      | DCC       | fra          | 12    | FBGN0011592 |
| 7      | MAGI2     | Magi         | 10    | FBGN0034590 |
| 8      | THSD7B    | none >5      |       |             |
| 9      | SORCS3    | none >5      |       |             |
| 10     | MAML3     | none >5      |       |             |
| 11     | MSRA      | Eip72CD      | 11    | FBGN0000565 |
| 12     | DAB1      | Dab          | 8     | FBGN0000414 |
| 13     | PDE4B     | dnc          | 12    | FBGN0000479 |
| 14     | ROBO2     | robo1        | 11    | FBGN0005631 |
|        |           | robo3        | 7     | FBGN0041097 |
|        |           | robo2        | 5     | FBGN0002543 |
| 15     | XKR6      | CG32579      | 10    | FBGN0053579 |



|    |          | CG18635       | 5  | FBGN0034279 |
|----|----------|---------------|----|-------------|
| 16 | HIST1H3I | His3:CG33866  | 5  | FBGN0053866 |
|    |          | His3: CG33863 | 5  | FBGN0053863 |
| 17 | CAMTA1   | Camta         | 12 | FBGN0259234 |
| 18 | LRRC4C   | kek3          | 5  | FBGN0028370 |
| 19 | NCAM1    | Fas2          | 11 | FBGN0000635 |
| 20 | WDPCP    | frtz          | 13 | FBGN0086698 |
| 21 | HS6ST3   | Hs6st         | 13 | FBGN0038755 |
| 22 | LAMA2    | wb            | 8  | FBGN0261563 |
| 23 | EFNA5    | none >5       |    |             |
| 24 | NTM      | DIP-tehta     | 8  | FBGN0051646 |
|    |          | DIP-zeta      | 8  | FBGN0051708 |
|    |          | DIP-epsilon   | 8  | FBGN0259714 |
|    |          | DIP-kappa     | 8  | FBGN0051814 |
|    |          | DIP-alpha     | 7  | FBGN0052791 |
|    |          | DIP-delta     | 7  | FBGN0085420 |
|    |          | DIP-iota      | 7  | FBGN0031837 |
|    |          | DIP-beta      | 7  | FBGN0259245 |
|    |          | DIP-gamma     | 7  | FBGN0039617 |
|    |          | DIP-eta       | 7  | FBGN0031725 |
|    |          | Ama           | 6  | FBGN0000071 |
|    |          | Lac           | 5  | FBGN0010238 |
| 25 | SNTG1    | Syn2          | 14 | FBGN0034135 |
| 26 | CTNNA2   | alpha-Cat     | 13 | FBGN0010215 |
| 27 | CELF2    | bru1          | 14 | FBGN0000114 |
|    |          | bru2          | 10 | FBGN0262475 |
| 28 | ST3GAL3  | none >5       |    |             |
| 29 | HYAL1    | none >5       |    |             |
| 30 | HIST1H4L | His4r         | 5  | FBGN0013981 |
| 31 | FOXP2    | FoxP          | 8  | FBGN0262477 |
| 32 | BDNF     | none >5       |    |             |
| 33 | CHD13    | none >5       |    |             |
| 34 | PTPRF    | Lar           | 11 | FBGN0000464 |



| 35 | C10orf32 | CG18065     | 9  | FBGN0034519 |
|----|----------|-------------|----|-------------|
| 36 | BTN3A2   | none >5     |    |             |
| 37 | OTX1     | ос          | 7  | FBGN0004102 |
| 38 | ZSCAN12  | none >5     |    |             |
| 39 | BTN2A1   | none >5     |    |             |
| 40 | EXOC4    | Sec8        | 14 | FBGN0266672 |
| 41 | LAMB2    | LanB1       | 13 | FBGN0261800 |
| 42 | ZKSCAN3  | none >5     |    |             |
| 43 | ZKSCAN5  | none >5     |    |             |
| 44 | ERI1     | none >5     |    |             |
| 45 | NEGR1    | Lac         | 9  | FBGN0010238 |
|    |          | DIP-zeta    | 8  | FBGN0051708 |
|    |          | DIP-epsilon | 7  | FBGN0259714 |
|    |          | DIP-eta     | 7  | FBGN0031725 |
|    |          | DIP-beta    | 7  | FBGN0259245 |
|    |          | DIP-kappa   | 6  | FBGN0051814 |
|    |          | DIP-iota    | 6  | FBGN0031837 |
|    |          | DIP-alpha   | 6  | FBGN0052791 |
|    |          | DIP-gamma   | 6  | FBGN0039617 |
|    |          | DIP-delta   | 6  | FBGN0085420 |
|    |          | Ama         | 5  | FBGN0000071 |
|    |          | DIP-theta   | 5  | FBGN0051646 |
| 46 | ELAVL4   | fne         | 13 | FBGN0086675 |
|    |          | Rbp9        | 12 | FBGN0010263 |
|    |          | elav        | 7  | FBGN0260400 |
| 47 | OPCML    | DIP-iota    | 9  | FBGN0031837 |
|    |          | DIP-theta   | 8  | FBGN0051646 |
|    |          | DIP-epsilon | 8  | FBGN0259714 |
|    |          | DIP-gamma   | 8  | FBGN0039617 |
|    |          | DIP-eta     | 8  | FBGN0031725 |
|    |          | DIP-alpha   | 7  | FBGN0052791 |
|    |          | Ama         | 7  | FBGN0000071 |
|    |          | DIP-zeta    | 7  | FBGN0051708 |



|    |           | DIP-beta       | 7  | FBGN0259245 |
|----|-----------|----------------|----|-------------|
|    |           | DIP-kappa      | 7  | FBGN0051814 |
|    |           | DIP-delta      | 6  | FBGN0085420 |
|    |           | Lac            | 5  | FBGN0010238 |
| 48 | MDH1      | Mdh1           | 14 | FBGN0262782 |
| 49 | INPP4B    | CG42271        | 13 | FBGN0262782 |
| 50 | CAMKV     | none >5        |    |             |
| 51 | PGBD1     | none >5        |    |             |
| 52 | MAD1L1    | Mad1           | 12 | FBGN0026326 |
| 53 | ZFHX3     | zfh2           | 12 | FBGN0004607 |
| 54 | ZIC4      | ора            | 9  | FBGN0003002 |
| 55 | HIST1H2BN | His2B: CG33884 | 8  | FBGN0053884 |
| 56 | FBXL16    | CG32085        | 12 | FBGN0052085 |
| 57 | CYP17A1   | none >5        |    |             |
| 58 | ZSCAN16   | none >5        |    |             |
| 59 | ZSCAN4    | none >5        |    |             |
| 60 | FURIN     | Fur1           | 10 | FBGN004509  |
| 61 | TCF4      | da             | 12 | FBGN0267821 |
| 62 | ZSCAN8    | none >5        |    |             |
| 63 | TMEM161B  | CG7638         | 14 | FBGN0036133 |
| 64 | STK32C    | CG32944        | 11 | FBGN0052944 |
| 65 | ZSCAN9    | none >5        |    |             |
| 66 | MFHAS1    | none >5        |    |             |
| 67 | HIST1H3J  | His3: CG33830  | 5  | FBGN0053830 |
|    |           | His3: CG33863  | 5  | FBGN0053863 |
| 68 | UTRN      | Dys            | 9  | FBGN0260003 |
| 69 | ZNF789    | none >5        |    |             |
| 70 | WDR24     | Wdr24          | 14 | FBGN0025718 |
| 71 | NT5C2     | CG32549        | 14 | FBGN0052549 |
| 72 | PINX1     | CG11180        | 7  | FBGN0034528 |
| 73 | HCN1      | lh             | 5  | FBGN0263397 |
| 74 | FAM002A   | none >5        |    |             |
| 75 | RBFOX1    | Rbfox1         | 9  | FBGN0052062 |



| 76  | ENO4          | none >5 |    |             |
|-----|---------------|---------|----|-------------|
| 77  | ASCC3         | obe     | 15 | FBGN0038344 |
| 78  | RP1L1         | none >5 |    |             |
| 79  | GSI-259H13.10 | none >5 |    |             |
| 80  | TCF20         | CG5098  | 6  | FBGN0034300 |
| 81  | PPP6C         | PpV     | 15 | FBGN0003139 |
| 82  | ESRRG         | ERR     | 14 | FBGN0035849 |
| 83  | C10orf32-ASMT | none >5 |    |             |
| 84  | ARID5B        | none >5 |    |             |
| 85  | CNNM2         | uex     | 12 | FBGN0262124 |
| 86  | RP11-159G9.5  | none >5 |    |             |
| 87  | ТСТА          | none >5 |    |             |
| 88  | CGGBP1        | none >5 |    |             |
| 89  | WBP1L         | none >5 |    |             |
| 90  | ARL3          | dnd     | 12 | FBGN0038916 |
| 91  | C3orf38       | CG13876 | 14 | FBGN0035109 |
| 92  | ZNF423        | Oaz     | 12 | FBGN0284250 |
| 93  | GABRB1        | Lcch3   | 13 | FBGN0010240 |
| 94  | RABEPK        | none >5 |    |             |
| 95  | A3GALT2       | none >5 |    |             |
| 96  | PRKG1         | for     | 13 | FBGN0000721 |
|     |               | Pkg21D  | 7  | FBGN0000442 |
|     |               | CG4839  | 5  | FBGN0032187 |
| 97  | BPTF          | E(bx)   | 13 | FBGN0000541 |
| 98  | NDUFAF2       | CG43346 | 6  | FBGN0263051 |
| 99  | REV3L         | mus205  | 12 | FBGN0002891 |
| 100 | HLA-G         | none >5 |    |             |
| 101 | KLHL29        | none >5 |    |             |
| 102 | OR5V1         | none >5 |    |             |
| 103 | BRINP1        | none >5 |    |             |
| 104 | ZNF165        | none >5 |    |             |
| 105 | NAALADL2      | none >5 |    |             |
| 106 | NQO1          | none >5 |    |             |



| 107 | ZNF322  | none >5 |    |             |
|-----|---------|---------|----|-------------|
| 108 | ISL1    | tup     | 14 | FBGN0003896 |
| 109 | TNKS    | Tnks    | 12 | FBGN0027508 |
| 110 | SFXN2   | Sfxn2   | 14 | FBGN0036843 |
| 111 | ARPC1B  | Arpc1   | 13 | FBGN0001961 |
| 112 | LRRC4   | none >5 |    |             |
| 113 | TRIM8   | none >5 |    |             |
| 114 | ARPC1A  | Arpc1   | 14 | FBGN0001961 |
| 115 | ZIC1    | ора     | 9  | FBGN0003002 |
| 116 | LRPPRC  | bsf     | 13 | FBGN0284256 |
|     |         | Lrpprc2 | 8  | FBGN0027794 |
| 117 | ERCC8   | none >5 |    |             |
| 118 | SOX7    | Sox15   | 5  | FBGN0005613 |
| 119 | HIC1    | none >5 |    |             |
| 120 | AGBL4   | CG31019 | 13 | FBGN0051019 |
| 121 | SCAI    | CG13293 | 14 | FBGN0035677 |
| 122 | ZNF655  | none >5 |    |             |
| 123 | BIRC6   | Bruce   | 15 | FBGN0266717 |
| 124 | DAG1    | Dg      | 10 | FBGN0034072 |
| 125 | ZNF536  | none >5 |    |             |
| 126 | RANBP17 | Ranbp16 | 12 | FBGN0053180 |
| 127 | MCTP1   | Mctp    | 13 | FBGN0034389 |
| 128 | PCCA    | Mccc1   | 5  | FBGN0039877 |
| 129 | АКТЗ    | Akt1    | 12 | FBGN0010379 |
| 130 | MON1A   | Mon1    | 13 | FBGN0031640 |
| 131 | CLU     | none >5 |    |             |
| 132 | YIPF4   | none >5 |    |             |
| 133 | RASSF1  | none >5 |    |             |
| 134 | CA10    | CARPB   | 13 | FBGN0052698 |
|     |         | CARPA   | 10 | FBGN0029962 |
| 135 | PCDH7   | none >5 |    |             |
| 136 | PCDH15  | Cad99C  | 11 | FBGN0039709 |
| 137 | CDH8    | none >5 |    |             |



| 138 | RUNX1T1  | nvy        | 11 | FBGN0005636 |
|-----|----------|------------|----|-------------|
| 139 | ICK      | CG42366    | 9  | FBGN0259712 |
| 140 | ATP5J2   | ATPsynF    | 12 | FBGN0035032 |
| 141 | MLTK     | none >5    |    |             |
| 142 | GATA4    | pnr        | 10 | FBGN0003117 |
|     |          | GATAe      | 6  | FBGN0038391 |
| 143 | WWP2     | Su(dx)     | 11 | FBGN0003557 |
|     |          | Nedd4      | 5  | FBGN0259174 |
| 144 | NOB1     | CG2972     | 14 | FBGN0030177 |
| 145 | ELAVL2   | fne        | 14 | FBGN0086675 |
|     |          | Rbp9       | 12 | FBGN0010263 |
|     |          | elav       | 7  | FBGN0260400 |
| 146 | ICA1L    | ICA69      | 13 | FBGN0037050 |
| 147 | CACNA1D  | Ca-alpha1D | 13 | FBGN0001991 |
|     |          | cac        | 5  | FBGN0263111 |
| 148 | UBE2E3   | Ubc2       | 13 | FBGN0015320 |
|     |          | CG5440     | 5  | FBGN0031331 |
| 149 | IP6K1    | CG10082    | 12 | FBGN0034644 |
| 150 | PDAP1    | CG11444    | 13 | FBGN0029715 |
|     |          | CG4438     | 13 | FBGN0032115 |
| 151 | SOX7     | Sox15      | 5  | FBGN0005613 |
| 152 | TRAIP    | nopo       | 10 | FBGN0034314 |
| 153 | DHODH    | Dhod       | 14 | FBGN0000447 |
| 154 | HP       | none >5    |    |             |
| 155 | NECAB1   | none >5    |    |             |
| 156 | BTN1A1   | none >5    |    |             |
| 157 | FAM167A  | none >5    |    |             |
| 158 | ACTN2    | Actn       | 13 | FBGN0000667 |
| 159 | KIA1919  | none >5    |    |             |
| 160 | KCNJ6    | lrk2       | 6  | FBGN0039081 |
|     |          | lrk1       | 5  | FBGN0265042 |
| 161 | C15orf59 | none >5    |    |             |
| 162 | NFAT5    | NFAT       | 7  | FBGN0030505 |



| 163 | TRIM39       | none >5   |    |             |
|-----|--------------|-----------|----|-------------|
| 164 | EMB          | none >5   |    |             |
| 165 | AFF3         | lilli     | 8  | FBGN0041111 |
| 166 | GALNTL6      | Pgant6    | 14 | FBGN0035375 |
|     |              | Pgant4    | 11 | FBGN0051956 |
|     |              | Pgant8    | 7  | FBGN0036529 |
|     |              | CG31776   | 6  | FBGN0051776 |
|     |              | CG7579    | 5  | FBGN0036528 |
|     |              | CG7304    | 5  | FBGN0036527 |
| 167 | RP11-180C1.1 | none >5   |    |             |
| 168 | WDR12        | CG6724    | 14 | FBGN0032298 |
| 169 | CCDC36       | none >5   |    |             |
| 170 | AUTS2        | none >5   |    |             |
| 171 | ARID4A       | htk       | 11 | FBGN0085451 |
| 172 | ELOVL7       | ELOVL     | 15 | FBGN0037534 |
|     |              | CG31522   | 14 | FBGN0051522 |
|     |              | CG31523   | 10 | FBGN0051523 |
|     |              | CG6660    | 7  | FBGN0039030 |
|     |              | eloF      | 6  | FBGN0037762 |
|     |              | CG18609   | 6  | FBGN0034382 |
|     |              | sit       | 6  | FBGN0038986 |
|     |              | CG33110   | 6  | FBGN0053110 |
|     |              | CG30008   | 5  | FBGN0050008 |
|     |              | CG8534    | 5  | FBGN0037761 |
|     |              | CG9458    | 5  | FBGN0037765 |
|     |              | CG9459    | 5  | FBGN0037764 |
|     |              | CG31141   | 5  | FBGN0051141 |
|     |              | CG5326    | 5  | FBGN0038983 |
|     |              | CG17821   | 5  | FBGN0034383 |
|     |              | bond      | 5  | FBGN0260942 |
|     |              | CG16904   | 5  | FBGN0037763 |
|     |              | Elo68beta | 5  | FBGN0036128 |
| 173 | CALB1        | Cbp53E    | 10 | FBGN0004580 |



| 174 | OR2J2      | none >5       |    |             |
|-----|------------|---------------|----|-------------|
| 175 | EYS        | eys           | 5  | FBGN0031414 |
| 176 | CARF       | none >5       |    |             |
| 177 | C3orf84    | none >5       |    |             |
| 178 | ACTR10     | Arp10         | 14 | FBGN0031050 |
| 179 | TRIM27     | none >5       |    |             |
| 180 | HPR        | none >5       |    |             |
| 181 | C8orf12    | none >5       |    |             |
| 182 | GOLGA1     | cbs           | 12 | FBGN0086757 |
| 183 | C17orf58   | none >5       |    |             |
| 184 | TBC1D5     | TBC1D5        | 9  | FBGN0038129 |
| 185 | NFKB2      | Rel           | 6  | FBGN0014018 |
| 186 | EHBP1      | Ehbp1         | 12 | FBGN0034180 |
| 187 | AC025287.1 | none >5       |    |             |
| 188 | NFIA       | Nfl           | 12 | FBGN0042696 |
| 189 | C20orf112  | CG46301       | 7  | FBGN0283651 |
| 190 | MST1R      | none >5       |    |             |
| 191 | MAPKAP1    | Sin1          | 15 | FBGN0033935 |
| 192 | NRXN3      | Nrx-1         | 11 | FBGN0038975 |
| 193 | HIST1H1B   | His1:CG33825  | 8  | FBGN0053825 |
|     |            | His1: CG33807 | 7  | FBGN0053807 |
|     |            | His1: CG33801 | 7  | FBGN0053801 |
|     |            | His1: CG33834 | 6  | FBGN0053834 |
|     |            | His1: CG33861 | 6  | FBGN0053861 |
| 194 | OR2B2      | none >5       |    |             |
| 195 | ANO4       | CG6938        | 10 | FBGN0036235 |
|     |            | CG10353       | 7  | FBGN0030349 |
|     |            | subdued       | 7  | FBGN0038721 |
| 196 | GBF1       | garz          | 15 | FBGN0264560 |
| 197 | ZNF23      | none >5       |    |             |
| 198 | NKAIN2     | NKAIN         | 9  | FBGN0085442 |
| 199 | WFIKKN1    | none >5       |    |             |
| 200 | ERBB3      | Egfr          | 9  | FBGN0003731 |



| 201 | MTMR9    | CG5026   | 15 | FBGN0035945 |
|-----|----------|----------|----|-------------|
| 202 | LRRC27   | none >5  |    |             |
| 203 | FBXL17   | none >5  |    |             |
| 204 | FHIT     | none >5  |    |             |
| 205 | тох      | CG12104  | 5  | FBGN0035238 |
| 206 | GRID1    | none >5  |    |             |
| 207 | FOXP1    | FoxP     | 8  | FBGN0262477 |
| 208 | GRM8     | none >5  |    |             |
| 209 | BNC1     | disco-r  | 9  | FBGN0285879 |
|     |          | disco    | 9  | FBGN0000459 |
| 210 | CNTNAP5  | Nrx-IV   | 10 | FBGN0013997 |
| 211 | CBX8     | Pc       | 9  | FBGN0003042 |
| 212 | KIAAI522 | none >5  |    |             |
| 213 | BRWD1    | BRWD3    | 9  | FBGN0011785 |
| 214 | CUEDC2   | CG9636   | 14 | FBGN0037556 |
| 215 | ADAT1    | Adat1    | 9  | FBGN0028658 |
| 216 | KPNA2    | Pen      | 12 | FBGN0267727 |
| 217 | TFAP2B   | TfAP-2   | 9  | FBGN0261953 |
| 218 | NPAS3    | trh      | 9  | FBGN0262139 |
| 219 | SUFU     | Su(fu)   | 14 | FBGN0005355 |
| 220 | TNRC6A   | gw       | 8  | FBGN0051992 |
| 221 | NCOA5    | Neos     | 10 | FBGN0024542 |
| 222 | WDR38    | none >5  |    |             |
| 223 | PHACTR1  | CG32264  | 8  | FBGN0052264 |
| 224 | SND1     | Tudor-SN | 13 | FBGN0035121 |
| 225 | PLXNA4   | PlexA    | 12 | FBGN0025741 |
| 226 | USP4     | none >5  |    |             |
| 227 | CPNE4    | none >5  |    |             |
| 228 | LNPEP    | CG3502   | 5  | FBGN0046253 |
|     |          | CG31445  | 5  | FBGN0051445 |
|     |          | SP1029   | 5  | FBGN0263236 |
| 229 | NRXN1    | Nrx-1    | 12 | FBGN0038975 |
| 230 | ACTR1A   | Arp1     | 14 | FBGN0011745 |



www.manaraa.com

| 231 | PRDX5       | Prx5       | 13 | FBGN0038570 |
|-----|-------------|------------|----|-------------|
| 232 | NRAP        | none >5    |    |             |
| 233 | ARID1B      | osa        | 12 | FBGN0261885 |
| 234 | SMIM19      | none >5    |    |             |
| 235 | HIVEP1      | shn        | 7  | FBGN0003396 |
| 236 | IQCJ-SCHIP1 | Schip1     | 9  | FBGN0032221 |
| 237 | TRAF3       | none >5    |    |             |
| 238 | PIGQ        | PIG-Q      | 8  | FBGN0086448 |
| 239 | TMEM163     | none >5    |    |             |
| 240 | LRFN2       | none >5    |    |             |
| 241 | PSD         | Efa6       | 10 | FBGN0051158 |
| 242 | CADPS2      | Cadps      | 11 | FBGN0053653 |
| 243 | GGACT       | Tina-1     | 14 | FBGN0035083 |
|     |             | CG2811     | 14 | FBGN0035082 |
| 244 | CABP1       | none >5    |    |             |
| 245 | SGCD        | Scgdelta   | 13 | FBGN0025391 |
| 246 | PSMA3       | Prosalpha7 | 15 | FBGN0023175 |
| 247 | PMFBP1      | none >5    |    |             |
| 248 | USP28       | none >5    |    |             |
| 249 | CDHR4       | none >5    |    |             |
| 250 | TSR1        | Tsr1       | 13 | FBGN0037073 |
| 251 | RBMS        | CG4896     | 14 | FBGN0031319 |
|     |             | CG4887     | 11 | FBGN0031318 |
| 252 | GAPVD1      | Gapvd1     | 14 | FBGN0030286 |
| 253 | BTBD1       | none >5    |    |             |
| 254 | RNF123      | CG6752     | 14 | FBGN0038296 |
| 255 | SYNGAP1     | CG42684    | 9  | FBGN0261570 |
| 256 | ABT1        | CG32708    | 13 | FBGN0052708 |
|     |             | CG10993    | 12 | FBGN0030524 |
|     |             | CG41562    | 11 | FBGN0085693 |
|     |             | CG40813    | 11 | FBGN0085521 |
|     |             | CG32706    | 10 | FBGN0052706 |
|     |             | CG6999     | 10 | FBGN0030085 |



| 257 | CTNNA3       | alpha-Cat | 7  | FBGN0010215 |
|-----|--------------|-----------|----|-------------|
| 258 | HMGN4        | none >5   |    |             |
| 259 | TM6SF1       | none >5   |    |             |
| 260 | KDM4B        | Kdm4A     | 11 | FBGN0033233 |
|     |              | Kdm4B     | 9  | FBGN0053182 |
| 261 | FAM186B      | none >5   |    |             |
| 262 | HOOK1        | hook      | 10 | FBGN0001202 |
| 263 | NICN1        | none >5   |    |             |
| 264 | FXR1         | Fmr1      | 12 | FBGN0028734 |
| 265 | RAB5B        | Rab5      | 13 | FBGN0014010 |
| 266 | FHIT         | none >5   |    |             |
| 267 | MCRS1        | Rcd5      | 14 | FBGN0263832 |
| 268 | CYB561D2     | CG10165   | 9  | FBGN0032801 |
|     |              | CG13078   | 7  | FBGN0032809 |
|     |              | CG13077   | 7  | FBGN0032810 |
| 269 | PHC2         | ph-p      | 6  | FBGN0004861 |
|     |              | pd-d      | 6  | FBGN0004860 |
| 270 | KDM4A        | Kdm4A     | 11 | FBGN0033233 |
|     |              | Kdm4B     | 10 | FBGN0053182 |
| 271 | RHOA         | Rho1      | 13 | FBGN0014020 |
| 272 | BSN          | none >5   |    |             |
| 273 | SEMA3F       | Sema2a    | 7  | FBGN0011260 |
|     |              | Sema2a    | 6  | FBGN0264273 |
| 274 | GNAT1        | Galphai   | 6  | FBGN0001104 |
| 275 | TMEM115      | CG9536    | 12 | FBGN0031818 |
| 276 | ZNF654       | none >5   |    |             |
| 277 | ZSCAN31      | none >5   |    |             |
| 278 | TRAF3IP2     | none >5   |    |             |
| 279 | PTCD1        | CG4611    | 10 | FBGN0035591 |
| 280 | ATP5J2-PTCD1 | CG4611    | 5  | FBGN0035591 |
| 281 | BLK          | Src64B    | 6  | FBGN0262733 |
| 282 | AS3MT        | none >5   |    |             |
| 283 | KIAA1598     | none >5   |    |             |



| 284 | FES        | FER           | 11 | FBGN0000723 |
|-----|------------|---------------|----|-------------|
| 285 | WDR90      | none >5       |    |             |
| 286 | RHOT2      | Miro          | 12 | FBGN0039140 |
| 287 | STUB1      | STUB1         | 15 | FBGN0027052 |
| 288 | MDGA1      | none >5       |    |             |
| 289 | GRID1      | none >5       |    |             |
| 290 | ELMO1      | Ced-12        | 13 | FBGN0032409 |
| 291 | HDGFRP3    | CG7946        | 7  | FBGN0039743 |
| 292 | CALB2      | Cbp53E        | 11 | FBGN0004580 |
| 293 | FEZF1      | erm           | 9  | FBGN0031375 |
| 294 | ESR1       | none >5       |    |             |
| 295 | OR12D3     | none >5       |    |             |
| 296 | C14orf37   | none >5       |    |             |
| 297 | LONRF2     | CG32369       | 12 | FBGN0052369 |
| 298 | GABARAPL2  | Atg8a         | 5  | FBGN0052672 |
| 299 | NBEAL1     | CG43367       | 8  | FBGN0263110 |
| 300 | PDE11A     | Pde6          | 7  | FBGN0038237 |
|     |            | Pde11         | 6  | FBGN0085370 |
| 301 | AMBRA1     | none >5       |    |             |
| 302 | RAB19      | Rab19         | 8  | FBGN0015793 |
| 303 | ARFGAP2    | ArfGAP3       | 14 | FBGN0037182 |
| 304 | ATG13      | Atg13         | 11 | FBGN0261108 |
| 305 | AC117395.1 | none >5       |    |             |
| 306 | TRIM26     | none >5       |    |             |
| 307 | IGSF11     | none >5       |    |             |
| 308 | HIST1H3C   | His3: CG33863 | 6  | FBGN0053863 |
| 309 | DGKZ       | rdgA          | 14 | FBGN0261549 |
| 310 | SLC24A3    | zyd           | 9  | FBGN0265767 |
|     |            | CG17167       | 5  | FBGN0039941 |
| 311 | TDRKH      | papi          | 11 | FBGN0031401 |
| 312 | SCN2A      | para          | 11 | FBGN0258944 |
| 313 | LRRTM4     | none >5       |    |             |
| 314 | PRPF40B    | CG3542        | 13 | FBGN0031492 |



| 315 | REST       | none >5        |    |             |
|-----|------------|----------------|----|-------------|
| 316 | CCDC71     | none >5        |    |             |
| 317 | CPSF4      | Clp            | 15 | FBGN0015621 |
| 318 | SUOX       | shop           | 15 | FBGN0030966 |
| 319 | AF131215.5 | none >5        |    |             |
| 320 | PSMD11     | Rpn6           | 14 | FBGN0028689 |
| 321 | SPAST      | spas           | 15 | FBGN0039141 |
| 322 | ARHGAP15   | none >5        |    |             |
| 323 | DIAPH3     | dia            | 12 | FBGN0011202 |
| 324 | СІТ        | sti            | 12 | FBGN0002466 |
| 325 | RAB40C     | Rab40          | 14 | FBGN0030391 |
| 326 | ZNF207     | BuGZ           | 10 | FBGN0032600 |
| 327 | IGF1       | none >5        |    |             |
| 328 | RBM6       | CG4896         | 6  | FBGN0031319 |
|     |            | CG4887         | 5  | FBGN0031318 |
| 329 | PARD3B     | baz            | 11 | FBGN0000163 |
| 330 | TRIM31     | none >5        |    |             |
| 331 | KIAA1328   | none >5        |    |             |
| 332 | HYAL3      | none >5        |    |             |
| 333 | HHLA2      | none >5        |    |             |
| 334 | CCDC53     | CCDC53         | 14 | FBGN0031979 |
| 335 | FMNL3      | Frl            | 13 | FBGN0267795 |
| 336 | PLCB3      | Plc21C         | 12 | FBGN0004611 |
| 337 | PTK2       | Fak            | 12 | FBGN0020440 |
| 338 | HIST1H2AJ  | His2A: CG33832 | 6  | FBGN0053832 |
|     |            | His2A: CG33859 | 5  | FBGN0053859 |
| 339 | DLG2       | dlg1           | 11 | FBGN0001624 |
| 340 | ABDH17C    | CG33096        | 12 | FBGN0053096 |
| 341 | IPO13      | cdm            | 14 | FBGN0261532 |
| 342 | DEFB134    | none >5        |    |             |
| 343 | AAGAB      | CG32109        | 8  | FBGN0052109 |
| 344 | IMPDH2     | ras            | 10 | FBGN0003204 |
| 345 | ZSCAN23    | none >5        |    |             |



| 346 | CHD3         | Mi-2     | 12 | FBGN0262519 |
|-----|--------------|----------|----|-------------|
|     |              | Chd3     | 7  | FBGN0023395 |
| 347 | PPP1R3B      | Gbs-70E  | 9  | FBGN0036428 |
|     |              | Gbs-76A  | 5  | FBGN0036862 |
| 348 | ASPG         | CG6428   | 13 | FBGN0029689 |
|     |              | CG8526   | 13 | FBGN0037759 |
| 349 | POM121L2     | none >5  |    |             |
| 350 | DUSP6        | Mkp3     | 10 | FBGN0036844 |
| 351 | OAZ3         | Oda      | 7  | FBGN0014184 |
| 352 | TMEM71       | none >5  |    |             |
| 353 | RNF19B       | none >5  |    |             |
| 354 | RP11-463C8.4 | none >5  |    |             |
| 355 | IMMP2L       | CG11110  | 15 | FBGN0034535 |
| 356 | C8orf88      | none >5  |    |             |
| 357 | TERF21P      | none >5  |    |             |
| 358 | IKZF2        | none >5  |    |             |
| 359 | NYAP2        | none >5  |    |             |
| 360 | NBN          | nbs      | 10 | FBGN0261530 |
| 361 | RPS6KA4      | JIL-1    | 8  | FBGN0020412 |
| 362 | CNTN4        | Cont     | 12 | FBGN0037240 |
| 363 | ZNF19        | none >5  |    |             |
| 364 | PARPBP       | none >5  |    |             |
| 365 | ELL          | Su(Tpl)  | 9  | FBGN0014037 |
| 366 | S100PBP      | none >5  |    |             |
| 367 | TRAPPC1      | Bet5     | 14 | FBGN0260860 |
| 368 | SLC39A5      | Zip71B   | 8  | FBGN0035461 |
| 369 | BUD31        | l(1)10Bb | 14 | FBGN0001491 |
| 370 | PTPRD        | Lar      | 12 | FBGN0000464 |
| 371 | KCNH3        | Elk      | 11 | FBGN0011589 |
| 372 | C17orf75     | none >5  |    |             |
| 373 | METTL16      | CG7544   | 12 | FBGN0033994 |
| 374 | GUCA1C       | none >5  |    |             |
| 375 | ITIH3        | none >5  |    |             |



| 376 | ZFYVE21        | none >5  |    |             |
|-----|----------------|----------|----|-------------|
| 377 | PFN2           | none >5  |    |             |
| 378 | NLRC4          | none >5  |    |             |
| 379 | TMBIM6         | BI-1     | 14 | FBGN0035871 |
| 380 | RP11-481A20.11 | none >5  |    |             |
| 381 | THBS4          | Тѕр      | 12 | FBGN0031850 |
| 382 | ZNF652         | none >5  |    |             |
| 383 | UNC79          | unc79    | 14 | FBGN0038693 |
| 384 | NUP37          | Nup37    | 14 | FBGN0039301 |
| 385 | PXDNL          | Pxn      | 11 | FBGN0011828 |
| 386 | MST1           | none >5  |    |             |
| 387 | NAA25          | psidin   | 15 | FBGN0243511 |
| 388 | MORC1          | none >5  |    |             |
| 389 | ISYNA1         | Inos     | 13 | FBGN0025885 |
| 390 | XXcos-LUCA11.5 | none >5  |    |             |
| 391 | CACNB4         | Ca-beta  | 12 | FBGN0259822 |
| 392 | VT11A          | Vti1a    | 14 | FBGN0260862 |
| 393 | YARS           | TyrRS    | 15 | FBGN0027080 |
| 394 | CYP2J2         | Cyp18a1  | 9  | FBGN0010383 |
|     |                | Cyp305a1 | 6  | FBGN0036910 |
| 395 | SLC30A6        | none >5  |    |             |
| 396 | SFMBT1         | none >5  |    |             |
| 397 | TXNL4B         | none >5  |    |             |
| 398 | BCL11A         | CG9650   | 11 | FBGN0029939 |
| 399 | CHDH           | CG9514   | 8  | FBGN0030592 |
|     |                | Gld      | 7  | FBGN0001112 |
|     |                | CG12398  | 7  | FBGN0030596 |
|     |                | CG9518   | 7  | FBGN0030590 |
|     |                | CG9519   | 6  | FBGN0030589 |
|     |                | CG12539  | 6  | FBGN0030586 |
|     |                | CG9522   | 6  | FBGN0030587 |
|     |                | CG9521   | 6  | FBGN0030588 |
|     |                | CG6142   | 6  | FBGN0039415 |



www.manaraa.com
|     |                 | CG9503  | 6  | FBGN0030598 |
|-----|-----------------|---------|----|-------------|
|     |                 | CG9512  | 6  | FBGN0030593 |
|     |                 | fiz     | 6  | FBGN0030594 |
| 400 | TTC29           | none >5 |    |             |
| 401 | LINGO1          | none >5 |    |             |
| 402 | PLEKHA5         | CG34383 | 5  | FBGN0085412 |
| 403 | ASPSCR1         | CG33722 | 12 | FBGN0064126 |
| 404 | LUZP2           | none >5 |    |             |
| 405 | FAF1            | casp    | 14 | FBGN0034068 |
| 406 | NSF             | Nsf2    | 14 | FBGN0266464 |
|     |                 | comt    | 14 | FBGN0000346 |
|     |                 | CG31495 | 6  | FBGN0051495 |
| 407 | TMEM55A         | CG6707  | 12 | FBGN0036058 |
| 408 | MTX3            | CG9393  | 11 | FBGN0037710 |
| 409 | BAI3            | none >5 |    |             |
| 410 | PTPRN2          | IA-2    | 10 | FBGN0031294 |
| 411 | XXbac-BPG2J3.20 | none >5 |    |             |
| 412 | TMEM180         | none >5 |    |             |
| 413 | SSBP4           | Ssdp    | 12 | FBGN0011481 |
| 414 | VARS            | ValRS   | 15 | FBGN0027079 |
|     |                 | ValRS-m | 7  | FBGN0035942 |
| 415 | PTPRG           | Ptp99A  | 9  | FBGN0004369 |
| 416 | NFATC2IP        | none >5 |    |             |
| 417 | SIPA1L2         | none >5 |    |             |
| 418 | CPSF6           | Cpsf6   | 13 | FBGN0035872 |
| 419 | RAB7A           | Rab7    | 13 | FBGN0015795 |
| 420 | C1orf87         | none >5 |    |             |
| 421 | QK1             | how     | 12 | FBGN0264491 |
| 422 | BTN3A3          | none >5 |    |             |
| 423 | HIST1H2AL       | none >5 |    |             |
| 424 | ITIH4           | none >5 |    |             |
| 425 | CCDC88B         | Girdin  | 5  | FBGN0283724 |
| 426 | PITX3           | Ptx1    | 8  | FBGN0020912 |



| 427 | TRIM39-RPP21 | none >5       |    |             |
|-----|--------------|---------------|----|-------------|
| 428 | TGFBRAP1     | none >5       |    |             |
| 429 | IQCH         | none >5       |    |             |
| 430 | PPP1R13B     | ASPP          | 14 | FBGN0034606 |
| 431 | USMG5        | Neb-cGP       | 7  | FBGN0083167 |
| 432 | DPP10        | CG17684       | 9  | FBGN0263780 |
|     |              | CG11319       | 9  | FBGN0031835 |
|     |              | CG11034       | 9  | FBGN0031741 |
|     |              | ome           | 8  | FBGN0259175 |
|     |              | CG45002       | 6  | FBGN0266354 |
| 433 | CHST10       | none >5       |    |             |
| 434 | CD40         | none >5       |    |             |
| 435 | ZKSCAN2      | none >5       |    |             |
| 436 | OTX2         | ос            | 6  | FBGN0004102 |
| 437 | PSME4        | none >5       |    |             |
| 438 | CD47         | none >5       |    |             |
| 439 | KCNJ3        | lrk2          | 5  | FBGN0039081 |
| 440 | AGBL1        | none >5       |    |             |
| 441 | ZNF408       | none >5       |    |             |
| 442 | DXO          | CG9125        | 14 | FBGN0030793 |
|     |              | cuff          | 7  | FBGN0260932 |
| 443 | CUL3         | Cul3          | 13 | FBGN0261268 |
| 444 | SLC39A13     | none >5       |    |             |
| 445 | HIST1H4A     | His4: CG33887 | 5  | FBGN0053887 |
| 446 | HTR1F        | none >5       |    |             |
| 447 | SPOCK1       | Cow           | 9  | FBGN0039054 |
| 448 | CYP3A43      | Cyp9f2        | 8  | FBGN0038037 |
|     |              | Сур9с1        | 7  | FBGN0015040 |
|     |              | Cyp9b1        | 7  | FBGN0015038 |
|     |              | Cyp6a17       | 7  | FBGN0015714 |
|     |              | Cyp9h1        | 6  | FBGN0033775 |
|     |              | Cyp9b2        | 6  | FBGN0015039 |
|     |              | Cyp6a8        | 6  | FBGN0013772 |



|     |          | Cyp6a2  | 6  | FBGN0000473 |
|-----|----------|---------|----|-------------|
|     |          | Cyp6a23 | 6  | FBGN0033978 |
|     |          | Cyp6a18 | 6  | FBGN0039519 |
|     |          | Cyp6a22 | 6  | FBGN0013773 |
|     |          | Cyp6a9  | 6  | FBGN0013771 |
|     |          | Cyp6a19 | 6  | FBGN0033979 |
|     |          | Cyp6a13 | 5  | FBGN0033304 |
|     |          | Cyp6g1  | 5  | FBGN0025454 |
|     |          | Cyp6w1  | 5  | FBGN0033065 |
|     |          | Cyp6a20 | 5  | FBGN0033980 |
|     |          | Cyp6v1  | 5  | FBGN0031126 |
|     |          | Cyp6g2  | 5  | FBGN0033696 |
|     |          | Cyp6a21 | 5  | FBGN0033981 |
| 449 | CD19     | none >5 |    |             |
| 450 | DENND1B  | CG18659 | 10 | FBGN0027561 |
| 451 | MARCH1   | none >5 |    |             |
| 452 | HARBI1   | CG12253 | 8  | FBGN0026148 |
|     |          | CG43088 | 5  | FBGN0262534 |
| 453 | CLEC18A  | none >5 |    |             |
| 454 | GRIK2    | KaiR1D  | 10 | FBGN0038837 |
|     |          | Ekar    | 9  | FBGN0039916 |
|     |          | Grik    | 8  | FBGN0038840 |
|     |          | GluRIID | 7  | FBGN0028422 |
|     |          | clumsy  | 7  | FBGN0026255 |
|     |          | GluRIIE | 7  | FBGN0051201 |
|     |          | CG11155 | 7  | FBGN0039927 |
| 455 | BHLHE22  | Oli     | 12 | FBGN0032651 |
| 456 | C11orf49 | none >5 |    |             |
| 457 | PLD5     | CG9248  | 6  | FBGN0032923 |
|     |          | CG43345 | 5  | FBGN0263050 |
| 458 | NRXN2    | Nrx-1   | 12 | FBGN0038975 |
| 459 | SLC1A5   | Eaat1   | 7  | FBGN0026439 |
| 460 | TECPR1   | Pex23   | 14 | FBGN0052226 |
|     |          |         |    |             |



| 461 | ERBB4         | Egfr 1    | 0 | FBGN0003731 |
|-----|---------------|-----------|---|-------------|
| 462 | GPR137        | none >5   |   |             |
| 463 | HECTD4        | none >5   |   |             |
| 464 | PWWP2B        | none >5   |   |             |
| 465 | MYT1L         | CG43689   | 7 | FBGN0263772 |
| 466 | RBM43         | none >5   |   |             |
| 467 | SPNS1         | spin 1    | 3 | FBGN0086676 |
| 468 | TNRC6B        | gw        | 8 | FBGN0051992 |
| 469 | ALMS1         | none >5   |   |             |
| 470 | JADE2         | rno       | 7 | FBGN0035106 |
| 471 | FAM135B       | CG32333 1 | 3 | FBGN0052333 |
| 472 | DBNDD1        | none >5   |   |             |
| 473 | C1orf173      | none >5   |   |             |
| 474 | GABRA2        | CG8916 1  | 0 | FBGN0030707 |
|     |               | Grd       | 6 | FBGN0001134 |
| 475 | ARTN          | none >5   |   |             |
| 476 | EFTUD1        | CG33158 1 | 5 | FBGN0053158 |
| 477 | ZCCHC7        | Zcchc7    | 6 | FBGN0036668 |
| 478 | CTD-2330K9.3  | none >5   |   |             |
| 479 | CNPY2         | sel 1     | 2 | FBGN0263260 |
| 480 | САСҮВР        | CG3226 1  | 4 | FBGN0029882 |
| 481 | RPL6          | RpL6 1    | 4 | FBGN0039857 |
| 482 | DCD1          | none >5   |   |             |
| 483 | SGK223        | none >5   |   |             |
| 484 | PHLPP2        | Phllp     | 9 | FBGN0032749 |
| 485 | DNAJC11       | CG8531 1  | 4 | FBGN0033918 |
| 486 | ARL17B        | none >5   |   |             |
| 487 | FAT3          | kug 1     | 3 | FBGN0251574 |
| 488 | KANSL1        | nsl1      | 9 | FBGN0262527 |
| 489 | HACE1         | none >5   |   |             |
| 490 | FDFT1         | none >5   |   |             |
| 491 | STON1-GTF2A1L | TfIIA-L   | 5 | FBGN0011289 |
| 492 | CPNE7         | none >5   |   |             |



www.manaraa.com

| 493 | CCDC101        | Sgf29    | 13 | FBGN0050390 |
|-----|----------------|----------|----|-------------|
| 494 | ZNF75A         | none >5  |    |             |
| 495 | C6orf48        | none >5  |    |             |
| 496 | SPI1           | none >5  |    |             |
| 497 | MAPT           | tau      | 7  | FBGN0266579 |
| 498 | QRICH1         | none >5  |    |             |
| 499 | SZT2           | none >5  |    |             |
| 500 | CPEB4          | orb2     | 9  | FBGN0264307 |
| 501 | GABRB2         | Lcch3    | 12 | FBGN0010240 |
| 502 | CRHR1          | Dh44-R2  | 9  | FBGN0033744 |
|     |                | Dh44-R1  | 9  | FBGN0033932 |
| 503 | ERP29          | wbl      | 15 | FBGN0004003 |
| 504 | RYR2           | RyR      | 14 | FBGN0011286 |
| 505 | FPGT-TNNI3K    | none >5  |    |             |
| 506 | TNNI3K         | none >5  |    |             |
| 507 | IGF1R          | InR      | 12 | FBGN0283499 |
| 508 | NOTUM          | Notum    | 11 | FBGN0044028 |
| 509 | APEH           | none >5  |    |             |
| 510 | MPL            | none >5  |    |             |
| 511 | STH            | none >5  |    |             |
| 512 | SLC20A2        | NaPi-III | 12 | FBGN0260795 |
| 513 | STAT2          | none >5  |    |             |
| 514 | WNT3           | none >5  |    |             |
| 515 | RP11-977G19.10 | none >5  |    |             |
| 514 | ABHD16A        | CG1309   | 14 | FBGN0035519 |
| 517 | ATAT1          | CG17003  | 10 | FBGN0031082 |
| 518 | CS             | kdn      | 14 | FBGN0261955 |
|     |                | CG14740  | 7  | FBGN0037988 |
| 519 | SMG6           | Smg6     | 11 | FBGN0039260 |
| 520 | SMYD2          | Smyd3    | 10 | FBGN0011566 |
|     |                | SmydA-9  | 6  | FBGN0030102 |
|     |                | SmydA-5  | 5  | FBGN0033061 |
| 521 | RP5-966M1.6    | none >5  |    |             |



| 522 | PAN2    | PAN2      | 14 | FBGN0033352 |
|-----|---------|-----------|----|-------------|
| 523 | ARIH2   | ari-2     | 15 | FBGN0025186 |
| 524 | POSTN   | mfas      | 10 | FBGN0260745 |
|     |         | Fas1      | 7  | FBGN0285925 |
|     |         | CG43333   | 5  | FBGN0263038 |
| 525 | SCAND3  | none >5   |    |             |
| 526 | ZNF385D | none >5   |    |             |
| 527 | PIPOX   | none >5   |    |             |
| 528 | PHF10   | e(y)3     | 9  | FBGN0087008 |
| 529 | DALRD3  | CG8097    | 11 | FBGN0030660 |
| 530 | KLHDC8B | none >5   |    |             |
| 531 | ASTN2   | none >5   |    |             |
| 532 | PCGF6   | none >5   |    |             |
| 533 | PSMG1   | none >5   |    |             |
| 534 | AGO2    | AGO1      | 14 | FBGN0262739 |
| 535 | ZNF263  | none >5   |    |             |
| 536 | AP1G1   | AP-1gamma | 13 | FBGN0030089 |
| 537 | POU1F1  | none >5   |    |             |
| 538 | RSRC1   | none >5   |    |             |
| 539 | SLC17A3 | CG3649    | 6  | FBGN0034785 |
|     |         | MFS12     | 6  | FBGN0033234 |
|     |         | CG30265   | 6  | FBGN0050265 |
|     |         | CG9825    | 6  | FBGN0034783 |
|     |         | dmGlut    | 6  | FBGN0010497 |
|     |         | MFS17     | 5  | FBGN0058263 |
|     |         | CG2003    | 5  | FBGN0039886 |
|     |         | CG7881    | 5  | FBGN0033048 |
|     |         | MFS1      | 5  | FBGN0050272 |
|     |         | MFS14     | 5  | FBGN0010651 |
|     |         | CG6978    | 5  | FBGN0029727 |
|     |         | CG9254    | 5  | FBGN0028513 |
|     |         | CG12490   | 5  | FBGN0034782 |
|     |         | CG15096   | 5  | FBGN0034394 |



|     |                | MFS15   | 5  | FBGN0034392 |
|-----|----------------|---------|----|-------------|
| 540 | USP19          | none >5 |    |             |
| 541 | WDR27          | none >5 |    |             |
| 542 | AC011239.1     | none >5 |    |             |
| 543 | DPEP1          | CG44837 | 8  | FBGN0266100 |
|     |                | CG42750 | 6  | FBGN0261804 |
|     |                | CG5282  | 6  | FBGN0036986 |
| 544 | GPX1           | none >5 |    |             |
| 545 | TRIM38         | none >5 |    |             |
| 546 | LZTS2          | CG15365 | 6  | FBGN0030077 |
| 547 | DPYD           | su(r)   | 15 | FBGN0086450 |
| 548 | SRR            | Srr     | 8  | FBGN0037684 |
| 549 | SMIM15         | none >5 |    |             |
| 550 | NLGN1          | NIg3    | 11 | FBGN0083963 |
|     |                | Nlg2    | 10 | FBGN0031866 |
|     |                | NIg4    | 8  | FBGN0083975 |
|     |                | Nlg1    | 7  | FBGN0051146 |
| 551 | ANKRD52        | none >5 |    |             |
| 552 | AC010547.9     | none >5 |    |             |
| 553 | TRAFD1         | none >5 |    |             |
| 554 | SPPL2C         | none >5 |    |             |
| 555 | PTCRA          | none >5 |    |             |
| 556 | DEFB136        | none >5 |    |             |
| 557 | BMPR2          | wit     | 9  | FBGN0024179 |
| 558 | ZNF407         | none >5 |    |             |
| 559 | MACROD2        | none >5 |    |             |
| 560 | TMEM110        | none >5 |    |             |
| 561 | BRI3           | CG12012 | 12 | FBGN0035444 |
| 562 | FBXO9          | CG5961  | 15 | FBGN0038056 |
| 563 | TMEM110-MUSTN1 | none >5 |    |             |
| 564 | PHF1           | Pcl     | 10 | FBGN0003044 |
| 564 | AC079354.1     | none >5 |    |             |
| 566 | CCSER1         | none >5 |    |             |



| 567 | CDH12       | none >5   |    |             |
|-----|-------------|-----------|----|-------------|
| 568 | CAMK1D      | CaMKI     | 13 | FBGN0016126 |
| 569 | ARHGAP1     | RhoGAP68F | 15 | FBGN0036257 |
| 570 | RBM14       | none >5   |    |             |
| 571 | QARS        | GInRS     | 14 | FBGN0027090 |
| 572 | ERAP2       | CG3502    | 5  | FBGN0046253 |
|     |             | CG8773    | 5  | FBGN0038135 |
|     |             | CG31445   | 5  | FBGN0051445 |
|     |             | SP1029    | 5  | FBGN0263236 |
| 573 | CHADL       | none >5   |    |             |
| 574 | MSH5-SAPCD1 | none >5   |    |             |
| 575 | MSH5        | none >5   |    |             |
| 576 | HPCA        | Nca       | 10 | FBGN0013303 |
| 577 | KCNAB3      | Hk        | 10 | FBGN0263220 |
| 578 | GRIA4       | GluRIB    | 12 | FBGN0264000 |
|     |             | GluRIA    | 11 | FBGN0004619 |
| 579 | FAM13C      | CG6424    | 6  | FBGN0028494 |
| 580 | WDR6        | CG33172   | 13 | FBGN0053172 |
| 581 | CTTNBP2     | none >5   |    |             |
| 582 | MEF2C       | Mef2      | 11 | FBGN0011656 |
| 583 | ATP6V0B     | VhaPPA-1  | 15 | FBGN0028662 |
|     |             | VhaPPA1-2 | 9  | FBGN0262514 |
| 584 | ATP2A1      | SERCA     | 14 | FBGN0263006 |
| 585 | SLC22A12    | CG8654    | 6  | FBGN0034479 |
|     |             | Orct      | 6  | FBGN0019952 |
|     |             | Orct2     | 6  | FBGN0086365 |
|     |             | CG6126    | 5  | FBGN0038407 |
|     |             | Balat     | 5  | FBGN0033778 |
|     |             | CG6356    | 5  | FBGN0039178 |
|     |             | CG7458    | 5  | FBGN0037144 |
|     |             | SLC22A    | 5  | FBGN0037140 |
|     |             | CG4630    | 5  | FBGN0033809 |
| 586 | SLC25A20    | colt      | 14 | FBGN0019830 |



|     |               | MME1           | 10 | FBGN0031881 |
|-----|---------------|----------------|----|-------------|
| 587 | SLC4A2        | none >5        |    |             |
| 588 | AHCYL1        | AhcyL1         | 14 | FBGN0035371 |
|     |               | AhcyL2         | 10 | FBGN0015011 |
| 589 | TET2          | none >5        |    |             |
| 590 | GSTO2         | GstO2          | 12 | FBGN0035906 |
|     |               | GstO3          | 12 | FBGN0035904 |
|     |               | se             | 12 | FBGN0086348 |
|     |               | GstO1          | 11 | FBGN0035907 |
| 591 | PSMC3         | Rpt5           | 13 | FBGN0028684 |
| 592 | MLLT10        | Alh            | 6  | FBGN0261238 |
| 593 | FOXO3         | foxo           | 9  | FBGN0038197 |
| 594 | GPR135        | none >5        |    |             |
| 595 | AP1S1         | AP-1sigma      | 11 | FBGN0039132 |
| 596 | C10orf2       | mtDNA-helicase | 14 | FBGN0032154 |
|     |               | Chmp1          | 12 | FBGN0036805 |
| 597 | SLC35G5       | none >5        |    |             |
| 598 | MSI1          | Rbp6           | 11 | FBGN0260943 |
| 599 | POLR2F        | RpII18         | 14 | FBGN0003275 |
| 600 | MAPK14        | p38b           | 15 | FBGN0024846 |
|     |               | p38a           | 13 | FBGN0015765 |
|     |               | p38c           | 5  | FBGN0267339 |
| 601 | TRHDE         | none >5        |    |             |
| 602 | IGSF21        | none >5        |    |             |
| 603 | PRKAR2A       | Pka-R2         | 13 | FBGN0022382 |
|     |               | Pka-R1         | 5  | FBGN0259243 |
| 604 | UBXN1         | CG8209         | 15 | FBGN0035830 |
| 605 | GRID2         | none >5        |    |             |
| 606 | RP11-894J14.5 | none >5        |    |             |
| 607 | CCDC24        | none >5        |    |             |
| 608 | CNTNAP4       | Nrx-IV         | 10 | FBGN001397  |
| 609 | LY6H          | none >5        |    |             |
| 610 | MEIS2         | hth            | 11 | FBGN0001235 |



| 611 | RP11-410N8.4 | none >5 |    |             |
|-----|--------------|---------|----|-------------|
| 612 | RFT1         | CG3149  | 13 | FBGN0027564 |
| 613 | KIF26A       | CG14535 | 7  | FBGN0031955 |
| 614 | SPG7         | Spg7    | 13 | FBGN0024992 |
| 615 | LAT          | none >5 |    |             |
| 616 | FNDC5        | none >5 |    |             |
| 617 | SULT1A2      | St1     | 8  | FBGN0034887 |
|     |              | St3     | 7  | FBGN0265052 |
|     |              | St4     | 7  | FBGN0033887 |
|     |              | St2     | 6  | FBGN0037665 |
| 618 | ARPC5L       | Arpc5   | 13 | FBGN0031437 |
| 619 | XRCC3        | spn-B   | 15 | FBGN0003480 |
| 620 | RPL7L1       | RpL7    | 6  | FBGN0005593 |
| 621 | TMEM116      | none >5 |    |             |
| 622 | GPC6         | dlp     | 12 | FBGN0041604 |
| 623 | PFKFB2       | Pfrx    | 11 | FBGN0027621 |
| 624 | CTDP1        | Fcp1    | 13 | FBGN0035026 |
| 625 | EP300        | nej     | 12 | FBGN0261617 |
| 626 | L3MBTL2      | Sfmbt   | 10 | FBGN0032475 |
| 627 | CCDC167      | none >5 |    |             |
| 628 | IFRD2        | CG31694 | 13 | FBGN0051694 |
| 629 | BSCL2        | Seipin  | 12 | FBGN0040336 |
| 630 | GAS8         | Gas8    | 13 | FBGN0029667 |
| 631 | ATAD2B       | none >5 |    |             |
| 632 | IL23A        | none >5 |    |             |
| 633 | SORCS1       | none >5 |    |             |
| 634 | HOMER2       | homer   | 15 | FBGN0025777 |
| 635 | ZBTB16       | none >5 |    |             |
| 636 | COQ10A       | CG9410  | 13 | FBGN0033086 |
| 637 | SREBF1       | SREBP   | 12 | FBGN0261283 |
| 638 | DPP4         | CG11034 | 10 | FBGN0031741 |
|     |              | ome     | 9  | FBGN0259175 |
|     |              | CG17684 | 6  | FBGN0263780 |



| 639 | ANKS1B         | CG4393  | 10 | FBGN0039075 |
|-----|----------------|---------|----|-------------|
|     |                | CG11168 | 10 | FBGN0039249 |
| 640 | MSI2           | Rbp6    | 13 | FBGN0260943 |
|     |                | msi     | 5  | FBGN0011666 |
| 641 | PLCL2          | none >5 |    |             |
| 642 | STRIP1         | Strip   | 14 | FBGN0035437 |
| 643 | SEMA4G         | Sema2a  | 5  | FBGN0011260 |
|     |                | Sema2b  | 5  | FBGN0264273 |
| 644 | PRR7           | none >5 |    |             |
| 645 | CNPY3          | CNPYb   | 10 | FBGN0036847 |
| 646 | PDE1C          | Pde1c   | 8  | FBGN0264815 |
| 647 | PLD1           | Pld     | 12 | FBGN0286511 |
| 648 | ARHGAP27       | none >5 |    |             |
| 649 | MRPL43         | mRpL43  | 14 | FBGN0034893 |
| 650 | ТМРО           | none >5 |    |             |
| 651 | ZAP70          | Shark   | 7  | FBGN0015295 |
| 652 | TTC9C          | none >5 |    |             |
| 653 | PLEKHM1        | none >5 |    |             |
| 654 | DHX30          | none >5 |    |             |
| 655 | ITIH1          | none >5 |    |             |
| 656 | DEPDC1B        | none >5 |    |             |
| 657 | BPNT1          | CG7789  | 12 | FBGN0039698 |
| 658 | PACSIN3        | Synd    | 11 | FBGN0053094 |
| 659 | HNRNPUL2-BSCL2 | none >5 |    |             |
| 660 | TOP2B          | Top2    | 12 | FBGN0284220 |
| 661 | NAT16          | none >5 |    |             |
| 662 | USF2           | Usf     | 8  | FBGN0029711 |
| 663 | FKRP           | CG15651 | 14 | FBGN0034567 |
| 664 | KIAA1462       | none >5 |    |             |
| 665 | ТСАР           | none >5 |    |             |
| 666 | PIK3R3         | PiK21B  | 13 | FBGN0020622 |
| 667 | BTAF1          | Hel89B  | 12 | FBGN0022787 |
| 668 | NDFIP2         | Ndfip   | 13 | FBGN0052177 |



| 669 | AMIGO3        | none >5  |    |             |
|-----|---------------|----------|----|-------------|
| 670 | GMPPB         | CG1129   | 14 | FBGN0037279 |
| 671 | СНМРЗ         | Vps24    | 6  | FBGN0037231 |
| 672 | PLAGL2        | none >5  |    |             |
| 673 | AL645922.1    | none >5  |    |             |
| 674 | P4HTM         | none >5  |    |             |
| 675 | BEND7         | none >5  |    |             |
| 676 | CMTR1         | CG6379   | 12 | FBGN0029693 |
| 677 | RP11-831H9.11 | none >5  |    |             |
| 678 | TEAD3         | sd       | 12 | FBGN0003345 |
| 679 | RNF103-CHMP3  | Vps24    | 10 | FBGN0037231 |
| 680 | ТРМЗ          | Tm2      | 11 | FBGN0003721 |
|     |               | Tm1      | 11 | FBGN0003721 |
| 681 | NKAPL         | CG6066   | 11 | FBGN0039488 |
| 682 | RABEP2        | none >5  |    |             |
| 683 | CCNJ          | CycJ     | 8  | FBGN0010317 |
| 684 | PHF13         | none >5  |    |             |
| 685 | MKRN1         | CG5347   | 13 | FBGN0030578 |
|     |               | Mkrn1    | 11 | FBGN0029152 |
|     |               | CG5332   | 10 | FBGN0030577 |
|     |               | CG12477  | 7  | FBGN0036809 |
| 686 | TOM1L2        | CG3529   | 13 | FBGN0035995 |
| 687 | DHX16         | l(2)37Cb | 14 | FBGN0086444 |
| 688 | PHYHIPL       | none >5  |    |             |
| 689 | CASP7         | Drice    | 12 | FBGN0019972 |
|     |               | Dcp-1    | 12 | FBGN0010501 |
| 690 | RORA          | Hr3      | 9  | FBGN0000448 |
| 691 | HNRNPUL2      | CG30122  | 8  | FBGN0050122 |
| 692 | DLX6          | DII      | 7  | FBGN0000157 |
| 693 | LYZ           | LysP     | 13 | FBGN0004429 |
|     |               | LysE     | 12 | FBGN0004428 |
|     |               | LysD     | 11 | FBGN0004427 |
|     |               | LysS     | 11 | FBGN0004430 |



|     |            | LysB    | 11 | FBGN0004425 |
|-----|------------|---------|----|-------------|
|     |            | CG7798  | 10 | FBGN0034092 |
|     |            | LysX    | 10 | FBGN0004431 |
|     |            | CG16799 | 8  | FBGN0034538 |
|     |            | CG11159 | 8  | FBGN0034539 |
|     |            | CG16756 | 7  | FBGN0029765 |
|     |            | CG30062 | 6  | FBGN0050062 |
|     |            | CG8492  | 5  | FBGN0035813 |
| 694 | ADAM15     | Meltrin | 9  | FBGN0265140 |
| 695 | SORL1      | none >5 |    |             |
| 696 | MCHR2      | none >5 |    |             |
| 697 | JKAMP      | CG2126  | 14 | FBGN0039876 |
| 698 | НҮІ        | Gip     | 14 | FBGN0011770 |
| 699 | LIN7C      | veli    | 12 | FBGN0039269 |
| 700 | SLIT2      | sli     | 12 | FBGN0264089 |
| 701 | CYP7B1     | none >5 |    |             |
| 702 | C15orf40   | CG14966 | 12 | FBGN0035415 |
| 703 | VPS54      | scat    | 14 | FBGN0011232 |
| 704 | MAP2K5     | none >5 |    |             |
| 705 | AC005544.1 | none >5 |    |             |
| 706 | SFTA2      | none >5 |    |             |
| 707 | C11orf48   | none >5 |    |             |
| 708 | SIKE1      | Fgop2   | 11 | FBGN0031871 |
| 709 | CIPC       | none >5 |    |             |
| 710 | LMO3       | Bx      | 7  | FBGN0032196 |
| 711 | NSUN3      | none >5 |    |             |
| 712 | CUX1       | ct      | 10 | FBGN0004198 |
| 713 | USP3       | none >5 |    |             |
| 714 | BAD        | none >5 |    |             |
| 715 | PNMA2      | none >5 |    |             |
| 716 | ZBTB46     | none >5 |    |             |
| 717 | LINGO4     | none >5 |    |             |
| 718 | PSORS1C2   | none >5 |    |             |



| 719 | DYPSL2             | CRMP          | 10 | FBGN0023023 |
|-----|--------------------|---------------|----|-------------|
| 720 | HLA-B              | none >5       |    |             |
| 721 | HSPA5              | none >5       |    |             |
| 722 | KLHL21             | none >5       |    |             |
| 723 | TMEFF2             | none >5       |    |             |
| 724 | GSTO1              | se            | 14 | FBGN0086348 |
|     |                    | GSTO1         | 13 | FBGN0035907 |
|     |                    | GSTO2         | 11 | FBGN0035906 |
| 725 | AZGP1              | none >5       |    |             |
| 726 | CTBP1              | CtBP          | 12 | FBGN0020496 |
| 727 | B4GLT2             | beta4GalNAcTA | 12 | FBGN0027538 |
| 728 | VPS33B             | Vps33B        | 7  | FBGN0039335 |
| 729 | FTO                | none >5       |    |             |
| 730 | KIAA1551           | none >5       |    |             |
| 731 | BAIAP2L1           | IRSp53        | 8  | FBGN0052082 |
| 732 | C22orf23           | CG5280        | 12 | FBGN0035952 |
| 733 | SMARCC1            | mor           | 13 | FBGN0002783 |
| 734 | CSNK2B-LY6G5B-1181 | none >5       |    |             |
| 735 | EXT1               | ttv           | 13 | FBGN0254974 |
| 736 | ADAP2              | none >5       |    |             |
| 737 | SNRK               | CG8485        | 11 | FBGN0033915 |
| 738 | BNIP3L             | CG5059        | 5  | FBGN0037007 |
| 739 | FDPS               | Fpps          | 15 | FBGN0025373 |
| 740 | ATXN2L             | Atx2          | 10 | FBGN0041188 |
| 741 | ZBTB9              | none >5       |    |             |
| 742 | SERPINC1           | none >5       |    |             |
| 743 | CDKN2C             | none >5       |    |             |
| 744 | UBXN2A             | p47           | 8  | FBGN0033179 |
|     |                    | CG42383       | 7  | FBGN0259729 |
| 745 | MYO15A             | Myo10A        | 13 | FBGN0263705 |
| 746 | ZBTB37             | none >5       |    |             |
| 747 | RP11-10A14.4       | none >5       |    |             |
| 748 | NOA1               | CG10914       | 15 | FBGN0034307 |



| 749 | SGIP1      | CG8176         | 8  | FBGN0037702 |
|-----|------------|----------------|----|-------------|
| 750 | HISTH1A    | Hist1: CG33834 | 5  | FBGN0053834 |
|     |            | Hist1: CG33807 | 5  | FBGN0053807 |
|     |            | Hist1: CG33801 | 5  | FBGN0053801 |
|     |            | Hist1: CG33825 | 5  | FBGN0053825 |
| 751 | C16orf11   | none >5        |    |             |
| 752 | ARID2      | Bap170         | 13 | FBGN0042085 |
| 753 | REV1       | Rev1           | 13 | FBGN0035150 |
| 754 | C16orf3    | none >5        |    |             |
| 755 | CLIC1      | Clic           | 10 | FBGN0030529 |
| 756 | RBM19      | CG3335         | 15 | FBGN0036018 |
| 757 | HMGA1      | none >5        |    |             |
| 758 | COQ5       | Coq5           | 13 | FBGN0030460 |
| 759 | PWWP2A     | none >5        |    |             |
| 760 | GCAT       | CG10361        | 15 | FBGN0036208 |
| 761 | GPR75-ASB3 | none >5        |    |             |
| 762 | GRM7       | none >5        |    |             |
| 763 | OLFM1      | none >5        |    |             |
| 764 | CHMP1A     | none >5        |    |             |
| 765 | MAP4       | tau            | 6  | FBGN0266579 |
| 766 | SH2B1      | Lnk            | 10 | FBGN0028717 |
| 767 | ZFHX4      | zfh2           | 12 | FBGN0004607 |
| 768 | TMEM132B   | dtn            | 13 | FBGN0262730 |
| 769 | MED17      | MED17          | 14 | FBGN0038578 |
| 770 | ACYP2      | CG18371        | 10 | FBGN0033893 |
|     |            | CG14022        | 10 | FBGN0031700 |
|     |            | Acyp2          | 9  | FBGN0038363 |
|     |            | CG34161        | 8  | FBGN0085190 |
|     |            | Асур           | 8  | FBGN0025115 |
|     |            | CG11052        | 7  | FBGN0040524 |
| 771 | C2orf69    | CG31122        | 13 | FBGN0051122 |
| 772 | AQP8       | none >5        |    |             |
| 773 | PSMA6      | CG30382        | 12 | FBGN0050382 |



|     |               | Prosalpha1 | 11 | FBGN0263121 |
|-----|---------------|------------|----|-------------|
| 774 | MAST2         | dop        | 11 | FBGN0267390 |
| 775 | SPATA33       | none >5    |    |             |
| 776 |               |            |    |             |
| 777 |               | Nmd3       | 13 | FBGN0023542 |
| 778 |               |            | 10 | FBCN0023342 |
| 770 | CTD 2260417 2 | CC2502     | 5  | EBCN0046252 |
| 119 | GTD-2200AT7.2 | 000772     | 5  | FBGN0040233 |
|     |               | 0001115    | 5  | FBGN0038135 |
|     |               | CG31445    | 5  | FBGN0051445 |
|     |               | SP1029     | 5  | FBGN0263236 |
| 780 | CTNNAL1       | alpha-Catr | 14 | FBGN0029105 |
| 781 | DPCR1         | none >5    |    |             |
| 782 | GSTA4         | none >5    |    |             |
| 783 | MED27         | MED27      | 14 | FBGN0037359 |
| 784 | ALEX3         | none >5    |    |             |
| 785 | FLJ27365      | none >5    |    |             |
| 786 | C11orf80      | none >5    |    |             |
| 787 | POLDIP2       | POLDIP2    | 12 | FBGN0037329 |
| 788 | UBA7          | Uba1       | 7  | FBGN0023143 |
| 789 | ANO10         | Axs        | 12 | FBGN0000152 |
| 790 | CSMD1         | none >5    |    |             |
| 791 | UBE2E1        | Ubc2       | 12 | FBGN0015320 |
| 792 | HPSS          | р          | 9  | FBGN0086679 |
| 793 | ATAD5         | elg1       | 10 | FBGN0036574 |
| 794 | U2SURP        | CG9346     | 13 | FBGN0034572 |
| 795 | MTX1          | CG9393     | 14 | FBGN0037710 |
| 796 | BCL11B        | CG9650     | 12 | FBGN0029939 |
| 797 | ASNS          | AsnS       | 11 | FBGN0270926 |
| 798 | AL132989.1    | none >5    |    |             |
| 799 | HFE           | none >5    |    |             |
| 800 | UVSSA         | none >5    |    |             |
| 801 | TMEM17        | none >5    |    |             |
| 802 | TUFM          | mEFTu1     | 13 | FBGN0024556 |



|     |              | mEFTu2  | 5  | FBGN0033184  |
|-----|--------------|---------|----|--------------|
| 803 | RP11-529K1.3 | none >5 |    |              |
| 804 | SEZ6         | none >5 |    |              |
| 805 | PLEKHG5      | CG42674 | 6  | FBGN02161556 |
| 806 | DEF8         | CG11534 | 15 | FBGN0046296  |
| 807 | DYNC1I2      | sw      | 13 | FBGN0003654  |
|     |              | Sdic1   | 12 | FBGN0067861  |
|     |              | Sdic4   | 11 | FBGN0053499  |
|     |              | SdicB   | 7  | FBGN0283433  |
|     |              | Sdic3   | 7  | FBGN0052823  |
|     |              | Sdic2   | 6  | FBGN0053497  |
|     |              | SdicC   | 5  | FBGN0283434  |
| 808 | PTPRM        | none >5 |    |              |
| 809 | PRKAB1       | alc     | 13 | FBGN0260972  |
| 810 | BTBD9        | BTBD9   | 14 | FBGN0030228  |
| 811 | C6orf1       | none >5 |    |              |
| 812 | MEGT1        | none >5 |    |              |
| 813 | TMEM160      | none >5 |    |              |
| 814 | CSPG5        | none >5 |    |              |
| 815 | PRDM5        | none >5 |    |              |
| 816 | ANKRD54      | CG10809 | 10 | FBGN0036052  |
| 817 | SLC26A7      | Prestin | 6  | FBGN0036770  |
| 818 | BAIAP2       | IRSp53  | 10 | FBGN0052082  |
| 819 | TM9SF4       | TM9SF4  | 14 | FBGN0028541  |
|     |              | TM9SF2  | 5  | FBGN0032880  |
| 820 | ATXN1L       | Atx-1   | 7  | FBGN0029907  |
| 821 | SOX10        | Sox100B | 5  | FBGN0024288  |
| 822 | CHMP2B       | CHMP2B  | 14 | FBGN0035589  |
| 823 | TSPAN2       | none >5 |    |              |
| 824 | AKIRIN2      | akirin  | 14 | FBGN0082598  |
| 825 | CASC10       | none >5 |    |              |
| 826 | CLN3         | Cln3    | 13 | FBGN0036756  |
| 827 | KLF7         | luna    | 8  | FBGN0040765  |



| 828 | OR12D2       | none >5  |    |             |
|-----|--------------|----------|----|-------------|
| 829 | LY6G6F       | none >5  |    |             |
| 830 | COPZ2        | zetaCOP  | 7  | FBGN0040512 |
| 831 | PRKD1        | PKD      | 13 | FBGN0038603 |
| 832 | ALS2CL       | Als2     | 9  | FBGN0037116 |
| 833 | RP11-297N6.4 | none >5  |    |             |
| 834 | CHCHD3       | Chchd3   | 11 | FBGN0010808 |
| 835 | MRPS14       | mRpS14   | 13 | FBGN0044030 |
| 836 | SGCE         | Scgalpha | 14 | FBGN0032013 |
| 837 | FAM216B      | none >5  |    |             |
| 838 | PKLR         | РуК      | 11 | FBGN0267385 |
|     |              | CG2964   | 6  | FBGN0031462 |
|     |              | CG7069   | 5  | FBGN0038952 |
|     |              | CG7362   | 5  | FBGN0038258 |
| 839 | HSD17B12     | spidey   | 14 | FBGN0029975 |
|     |              | CG31809  | 6  | FBGN0051809 |
|     |              | CG13284  | 6  | FBGN0032614 |
|     |              | CG31810  | 5  | FBGN0051810 |
| 840 | ADCK1        | Adck     | 14 | FBGN0035039 |
| 841 | KCND2        | Shal     | 13 | FBGN0005564 |
| 842 | IQCJ         | none >5  |    |             |
| 843 | PROS1        | none >5  |    |             |
| 844 | DNAJB1       | CG5001   | 12 | FBGN0031322 |
|     |              | DnaJ-1   | 12 | FBGN0263106 |
|     |              | CG2887   | 6  | FBGN0030207 |
| 845 | CACNA1E      | cac      | 9  | FBGN0263111 |
| 846 | EMR2         | none >5  |    |             |
| 847 | MTFR1        | none >5  |    |             |
| 848 | HEYL         | Hey      | 7  | FBGN0027788 |
| 849 | GRK6         | Gprk2    | 12 | FBGN0261988 |
| 850 | DRG2         | CG6195   | 15 | FBGN0038723 |
| 851 | REEP1        | ReepA    | 8  | FBGN0261564 |
|     |              | CG5539   | 7  | FBGN0034907 |



|     |         | Reepl1  | 5  | FBGN0030313 |
|-----|---------|---------|----|-------------|
| 852 | PIK3C2G | Pi3K68D | 8  | FBGN0015278 |
| 853 | LY6G5C  | none >5 |    |             |
| 854 | CLN3    | Cln3    | 13 | FBGN0036756 |
| 855 | SLC6A9  | GlyT    | 7  | FBGN0034911 |
| 856 | PP1L    | CG7115  | 14 | FBGN0027515 |
| 857 | DBN1    | none >5 |    |             |
| 858 | TAS1R1  | none >5 |    |             |
| 859 | KCNE1   | none >5 |    |             |
| 860 | SLC6A10 | kar     | 13 | FBGN0001296 |
| 861 | UNC119B | unc-119 | 12 | FBGN0025549 |
| 862 | PCLO    | none >5 |    |             |
| 863 | L3HYPDH | none >5 |    |             |
| 864 | FAM206A | CG9288  | 13 | FBGN0260464 |
| 865 | DXL5    | none >5 |    |             |
| 866 | OVOL1   | ονο     | 8  | FBGN0003028 |
| 867 | KARS    | LysRS   | 15 | FBGN0027084 |
| 868 | TNF     | none >5 |    |             |
| 869 | TMEM69  | none >5 |    |             |
| 870 | SLC17A1 | CG2003  | 5  | FBGN0039886 |
|     |         | CG7881  | 5  | FBGN0033048 |
|     |         | CG12490 | 5  | FBGN0034782 |
|     |         | CG3649  | 5  | FBGN0034785 |
|     |         | MFS12   | 5  | FBGN0033234 |
|     |         | CG30265 | 5  | FBGN0050265 |
|     |         | CG9825  | 5  | FBGN0034783 |
| 871 | GNL1    | Ns4     | 14 | FBGN0032882 |
| 872 | KIF2B   | Klp10A  | 9  | FBGN0030268 |
|     |         | Klp59C  | 5  | FBGN0034824 |
|     |         | Klp59D  | 5  | FBGN0034827 |
| 873 | HELZ    | CH9425  | 12 | FBGN0036451 |
| 874 | TTL     | none >5 |    |             |
| 875 | RPL29   | RpL29   | 9  | FBGN0016726 |



| 876 | LSM 2.00    | none >5      |    |             |
|-----|-------------|--------------|----|-------------|
| 877 | ZNF394      | none >5      |    |             |
| 878 | HPCAL4      | Nca          | 5  | FBGN0013303 |
|     |             | CG7646       | 5  | FBGN0036926 |
| 879 | CCDC175     | none >5      |    |             |
| 880 | PPP1R18     | none >5      |    |             |
| 881 | ALS589765.1 | none >5      |    |             |
| 882 | RIIAD1      | none >5      |    |             |
| 883 | MSH6        | Msh6         | 13 | FBGN0036486 |
| 884 | KCNA4       | Sh           | 8  | FBGN0003380 |
| 885 | STON1       | none >5      |    |             |
| 886 | TMIGD1      | none >5      |    |             |
| 887 | CTSB        | CtsB1        | 14 | FBGN0030521 |
| 888 | SMARCD3     | Bap60        | 11 | FBGN0025463 |
| 889 | KIAA0586    | none >5      |    |             |
| 890 | TEAD1       | sd           | 13 | FBGN0003345 |
| 891 | AC068039.1  | none >5      |    |             |
| 892 | CSNK2B      | CkIlbeta     | 13 | FBGN0000259 |
|     |             | CkIIbeta2    | 6  | FBGN0026136 |
|     |             | Ssl          | 5  | FBGN0015300 |
|     |             | Ste: CG33237 | 5  | FBGN0053237 |
| 893 | VWA7        | none >5      |    |             |
| 894 | ACTR1B      | Arp1         | 12 | FBGN0011745 |
| 895 | GPT         | CG1640       | 13 | FBGN0030478 |
| 896 | MICALL1     | MICAL-like   | 12 | FBGN0036333 |
| 897 | FAM19A5     | none >5      |    |             |
| 898 | C11orf83    | none >5      |    |             |
| 899 | TUBB        | betaTub56D   | 8  | FBGN0284243 |
|     |             | betaTub85D   | 7  | FBGN0003889 |
|     |             | betaTub60D   | 5  | FBGN0003888 |
| 900 | ТNХВ        | none >5      |    |             |
| 901 | BAG5        | none >5      |    |             |
| 902 | B3GALT4     | none >5      |    |             |



| 903 | SNX29    | CG5439   | 9  | FBGN0032476 |
|-----|----------|----------|----|-------------|
| 904 | ZBTB20   | none >5  |    |             |
| 905 | CELF3    | bru3     | 10 | FBGN0264001 |
| 906 | GID4     | none >5  |    |             |
| 907 | GNAI2    | Galphai  | 11 | FBGN0001104 |
| 908 | ASXL1    | Asx      | 6  | FBGN0261823 |
| 909 | OR4C12   | none >5  |    |             |
| 910 | C6orf136 | CG16787  | 10 | FBGN0034940 |
| 911 | ERMARD   | none >5  |    |             |
| 912 | PNMT     | none >5  |    |             |
| 913 | SHMT1    | Shmt     | 14 | FBGN0029823 |
| 914 | NRGN     | none >5  |    |             |
| 915 | ASZ1     | Gasz     | 6  | FBGN0033273 |
| 916 | TLR9     | none >5  |    |             |
| 917 | TSPAN18  | none >5  |    |             |
| 918 | CHEK2    | lok      | 13 | FBGN0019686 |
| 919 | OR14J1   | none >5  |    |             |
| 920 | DOT1L    | gpp      | 12 | FBGN0264495 |
| 921 | PPP1R16A | MYPT-75D | 12 | FBGN0036801 |
| 922 | DLGAP1   | vlc      | 7  | FBGN0259978 |
| 923 | NMI      | none >5  |    |             |
| 924 | MARK3    | par-1    | 12 | FBGN0260934 |
| 925 | IP6K3    | CG10082  | 11 | FBGN0034644 |
| 926 | TRIM40   | none >5  |    |             |
| 927 | HLA-F    | none >5  |    |             |
| 928 | IP6K2    | CG10082  | 10 | FBGN0034644 |



www.manaraa.com

## VITA

Ananya Talikoti was born on September 5, 1997, in Raleigh, North Carolina and is an American citizen. She attended North Carolina State University (Raleigh, NC) from 2015 to 2019 and received her Bachelor of Science in Genetics. She joined Virginia Commonwealth University's Department of Human and Molecular Genetics and Dr. Mike Grotewiel's laboratory in the same department in 2019.



www.manaraa.com